193 resultados para mathematical reasoning
Resumo:
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.
Resumo:
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the Butter Beans Problem and the Airplane Problem). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data, together with background information containing specific criteria to be considered in the solution process. Four classes of third-graders (8 years of age) and their teachers participated in the 6-month program, which included preparatory modelling activities along with professional development for the teachers. In discussing our findings we address: (a) Ways in which the children applied their informal, personal knowledge to the problems; (b) How the children interpreted the tables of data, including difficulties they experienced; (c) How the children operated on the data, including aggregating and comparing data, and looking for trends and patterns; (c) How the children developed important mathematical ideas; and (d) Ways in which the children represented their mathematical understandings.
Resumo:
This thesis explored the knowledge and reasoning of young children in solving novel statistical problems, and the influence of problem context and design on their solutions. It found that young children's statistical competencies are underestimated, and that problem design and context facilitated children's application of a wide range of knowledge and reasoning skills, none of which had been taught. A qualitative design-based research method, informed by the Models and Modeling perspective (Lesh & Doerr, 2003) underpinned the study. Data modelling activities incorporating picture story books were used to contextualise the problems. Children applied real-world understanding to problem solving, including attribute identification, categorisation and classification skills. Intuitive and metarepresentational knowledge together with inductive and probabilistic reasoning was used to make sense of data, and beginning awareness of statistical variation and informal inference was visible.
Resumo:
A newspaper numbers game based on simple arithmetic relationships is discussed. Its potential to give students of elementary algebra practice in semi-ad hoc reasoning and to build general arithmetic reasoning skills is explored.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on mathematics anxiety. Gnaldi (2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning, basic numeracy skills, mathematics background and attitudes towards statistics. This work reports on some key relationships between these factors and in particular the importance of numeracy to statistical reasoning.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on maths anxiety. Gnaldi (Gnaldi 2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning ability, basic numeracy skills and attitudes towards statistics. This work reports on the relationships between these factors and in particular the importance of numeracy to statistical reasoning.
Resumo:
Despite compulsory mathematics throughout primary and junior secondary schooling, many schools across Australia continue in their struggle to achieve satisfactory numeracy levels. Numeracy is not a distinct subject in school curriculum, and in fact appears as a general capability in the Australian Curriculum, wherein all teachers across all curriculum areas are responsible for numeracy. This general capability approach confuses what numeracy should look like, especially when compared to the structure of numeracy as defined on standardised national tests. In seeking to define numeracy, schools tend to look at past NAPLAN papers, and in doing so, we do not find examples drawn from the various aspects of school curriculum. What we find are more traditional forms of mathematical worded problems.
Resumo:
Drawing on participatory action research, this study identifies the pedagogies necessary to advance reasoning, which is one of the proficiencies from the Australian Curriculum Mathematics, and explores how reasoning leads to greater productive disposition. With the current emphasis on STEM in schools, this research is timely. This thesis makes an original and substantive contribution to the understanding of why and how teachers can most effectively advance student proficiency in reasoning through targeted instructional strategies and style of instruction. The study explores the ways in which teacher practices, when focused on reasoning, enhance the disposition of students towards greater mathematical proficiency.