230 resultados para iris recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Less cooperative iris identification systems at a distance and on the move often suffers from poor resolution. The lack of pixel resolution significantly degrades the iris recognition performance. Super-resolution has been considered to enhance resolution of iris images. This paper proposes a pixelwise super-resolution technique to reconstruct a high resolution iris image from a video sequence of an eye. A novel fusion approach is proposed to incorporate information details from multiple frames using robust mean. Experiments on the MBGC NIR portal database show the validity of the proposed approach in comparison with other resolution enhancement techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance suffer from poor resolution of the captured iris images, which significantly degrades iris recognition performance. Superresolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, all existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values. This paper considers transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. This is the first paper to investigate the possibility of feature domain super-resolution for iris recognition, and experiments confirm the validity of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance suffer from poor resolution of the acquired iris images, which significantly degrades iris recognition performance. Super-resolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, most existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values, rather than the actual features used for recognition. This paper thoroughly investigates transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. A framework for applying super-resolution to nonlinear features in the feature-domain is proposed. Based on this framework, a novel feature-domain super-resolution approach for the iris biometric employing 2D Gabor phase-quadrant features is proposed. The approach is shown to outperform its pixel domain counterpart, as well as other feature domain super-resolution approaches and fusion techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of iris recognition systems is significantly affected by the segmentation accuracy, especially in non- ideal iris images. This paper proposes an improved method to localise non-circular iris images quickly and accurately. Shrinking and expanding active contour methods are consolidated when localising inner and outer iris boundaries. First, the pupil region is roughly estimated based on histogram thresholding and morphological operations. There- after, a shrinking active contour model is used to precisely locate the inner iris boundary. Finally, the estimated inner iris boundary is used as an initial contour for an expanding active contour scheme to find the outer iris boundary. The proposed scheme is robust in finding exact the iris boundaries of non-circular and off-angle irises. In addition, occlusions of the iris images from eyelids and eyelashes are automatically excluded from the detected iris region. Experimental results on CASIA v3.0 iris databases indicate the accuracy of proposed technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research has successfully applied super-resolution and multiple modality fusion techniques to address the major challenges of human identification at a distance using face and iris. The outcome of the research is useful for security applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new approach for recognizing the iris of the human eye is presented. Zero-crossings of the wavelet transform at various resolution levels are calculated over concentric circles on the iris, and the resulting one-dimensional (1-D) signals are compared with model features using different dissimilarity functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The richness of the iris texture and its variability across individuals make it a useful biometric trait for personal authentication. One of the key stages in classical iris recognition is the normalization process, where the annular iris region is mapped to a dimensionless pseudo-polar coordinate system. This process results in a rectangular structure that can be used to compensate for differences in scale and variations in pupil size. Most iris recognition methods in the literature adopt linear sampling in the radial and angular directions when performing iris normalization. In this paper, a biomechanical model of the iris is used to define a novel nonlinear normalization scheme that improves iris recognition accuracy under different degrees of pupil dilation. The proposed biomechanical model is used to predict the radial displacement of any point in the iris at a given dilation level, and this information is incorporated in the normalization process. Experimental results on the WVU pupil light reflex database (WVU-PLR) indicate the efficacy of the proposed technique, especially when matching iris images with large differences in pupil size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iris based identity verification is highly reliable but it can also be subject to attacks. Pupil dilation or constriction stimulated by the application of drugs are examples of sample presentation security attacks which can lead to higher false rejection rates. Suspects on a watch list can potentially circumvent the iris based system using such methods. This paper investigates a new approach using multiple parts of the iris (instances) and multiple iris samples in a sequential decision fusion framework that can yield robust performance. Results are presented and compared with the standard full iris based approach for a number of iris degradations. An advantage of the proposed fusion scheme is that the trade-off between detection errors can be controlled by setting parameters such as the number of instances and the number of samples used in the system. The system can then be operated to match security threat levels. It is shown that for optimal values of these parameters, the fused system also has a lower total error rate.