306 resultados para hyperbolic fourth-R quadratic equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chubby baby who eats well is desirable in our culture. Perceived low weight gains and feeding concerns are common reasons mothers seek advice in the early years. In contrast, childhood obesity is a global public health concern. Use of coercive feeding practices, prompted by maternal concern about weight, may disrupt a child’s innate self regulation of energy intake, promoting overeating and overweight. This study describes predictors of maternal concern about her child undereating/becoming underweight and feeding practices. Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n = 332) completed a self-administered questionnaire when the child was aged 12–16 months. Weight-for-age z-score (WAZ)was derived from weight measured by study staff. Mean age (SD) was 13.8 (1.3) months, mean WAZ (SD), 0.58 (0.86) and 49% were male. WAZ and two questions describing food refusal were combined in a structural equation model with four items from the Infant feeding Questionnaire (IFQ) to form the factor ‘Concern about undereating/weight’. Structural relationships were drawn between concern and IFQ factors ‘awareness of infant’s hunger and satiety cues’, ‘use of food to calm infant’s fussiness’ and ‘feeding infant on a schedule’, resulting in a model of acceptable fit. Lower WAZ and higher frequency of food refusal predicted higher maternal concern. Higher maternal concern was associated with lower awareness of infant cues (r = −.17, p = .01) and greater use of food to calm (r = .13, p = .03). In a cohort of healthy children, maternal concern about undereating and underweight was associated with practices that have the potential to disrupt self-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.