351 resultados para genetic association study
Resumo:
Aims/hypothesis Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study. Methods Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot. Results The top ranked variant was rs3805931 with p = 2.66 × 10−7, but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10−5) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10−8). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina. Conclusions/interpretation Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation.
Resumo:
Background: The genetic basis for developing asthma has been extensively studied. However, association studies to date have mostly focused on mild to moderate disease and genetic risk factors for severe asthma remain unclear. Objective: To identify common genetic variants affecting susceptibility to severe asthma. Methods: A genome-wide association study was undertaken in 933 European ancestry individuals with severe asthma based on Global Initiative for Asthma (GINA) criteria 3 or above and 3346 clean controls. After standard quality control measures, the association of 480 889 genotyped single nucleotide polymorphisms (SNPs) was tested. To improve the resolution of the association signals identified, non-genotyped SNPs were imputed in these regions using a dense reference panel of SNP genotypes from the 1000 Genomes Project. Then replication of SNPs of interest was undertaken in a further 231 cases and 1345 controls and a meta-analysis was performed to combine the results across studies. Results: An association was confirmed in subjects with severe asthma of loci previously identified for association with mild to moderate asthma. The strongest evidence was seen for the ORMDL3/GSDMB locus on chromosome 17q12-21 (rs4794820, p=1.03×10 (-8)following meta-analysis) meeting genome-wide significance. Strong evidence was also found for the IL1RL1/IL18R1 locus on 2q12 (rs9807989, p=5.59×10 (-8) following meta-analysis) just below this threshold. No novel loci for susceptibility to severe asthma met strict criteria for genome-wide significance. Conclusions: The largest genome-wide association study of severe asthma to date was carried out and strong evidence found for the association of two previously identified asthma susceptibility loci in patients with severe disease. A number of novel regions with suggestive evidence were also identified warranting further study.
Resumo:
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P<1.09 × 10−9) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
Resumo:
Migraine is a neurological disorder that is associated with increased levels of calcitonin gene-related peptide (CGRP) in plasma. CGRP, being one of the mediators of neurogenic inflammation and a phenomenon implicated in the pathogenesis of migraine headache, is thus suggested to have an important role in migraine pathophysiology. Polymorphisms of the CALCA gene have been linked to Parkinson's disease, ovarian cancer and essential hypertension, suggesting a functional role for these polymorphisms. Given the strong evidence linking CGRP and migraine, it is hypothesised that polymorphisms in the CALCA gene may play a role in migraine pathogenesis. Seemingly non functional intronic polymorphisms are capable of disrupting normal RNA processing or introducing a splice site in the transcript. A 16 bp deletion in the first intron of the CALCA gene has been reported to be a good match for the binding site for a transcription factor expressed strongly in neural crest derived cells, AP-2. This deletion also eliminates an intron splicing enhancer (ISE) that may potentially cause exon skipping. This study investigated the role of the 16 bp intronic deletion in the CALCA gene in migraineurs and matched control individuals. Six hundred individuals were genotyped for the deletion by polymerase chain reaction followed by fragment analysis on the 3130 Genetic Analyser. The results of this study showed no significant association between the intronic 16 bp deletion in the CALCA gene and migraine in the tested Australian Caucasian population. However, given the evidence linking CGRP and migraine, further investigation of variants with this gene may be warranted.
Resumo:
Migraine is a common, heterogeneous and heritable neurological disorder. Its pathophysiology is incompletely understood, and its genetic influences at the population level are unknown. In a population-based genome-wide analysis including 5,122 migraineurs and 18,108 non-migraineurs, rs2651899 (1p36.32, PRDM16), rs10166942 (2q37.1, TRPM8) and rs11172113 (12q13.3, LRP1) were among the top seven associations (P < 5 × 10(-6)) with migraine. These SNPs were significant in a meta-analysis among three replication cohorts and met genome-wide significance in a meta-analysis combining the discovery and replication cohorts (rs2651899, odds ratio (OR) = 1.11, P = 3.8 × 10(-9); rs10166942, OR = 0.85, P = 5.5 × 10(-12); and rs11172113, OR = 0.90, P = 4.3 × 10(-9)). The associations at rs2651899 and rs10166942 were specific for migraine compared with non-migraine headache. None of the three SNP associations was preferential for migraine with aura or without aura, nor were any associations specific for migraine features. TRPM8 has been the focus of neuropathic pain models, whereas LRP1 modulates neuronal glutamate signaling, plausibly linking both genes to migraine pathophysiology.
Resumo:
We conducted a large-scale association study to identify genes that influence nonfamilial breast cancer risk using a collection of German cases and matched controls and >25,000 single nucleotide polymorphisms located within 16,000 genes. One of the candidate loci identified was located on chromosome 19p13.2 [odds ratio (OR) = 1.5, P = 0.001]. The effect was substantially stronger in the subset of cases with reported family history of breast cancer (OR = 3.4, P = 0.001). The finding was subsequently replicated in two independent collections (combined OR = 1.4, P < 0.001) and was also associated with predisposition to prostate cancer in an independent sample set of prostate cancer cases and matched controls (OR = 1.4, P = 0.002). High-density single nucleotide polymorphism mapping showed that the extent of association spans 20 kb and includes the intercellular adhesion molecule genes ICAM1, ICAM4, and ICAM5. Although genetic variants in ICAM5 showed the strongest association with disease status, ICAM1 is expressed at highest levels in normal and tumor breast tissue. A variant in ICAM5 was also associated with disease progression and prognosis. Because ICAMs are suitable targets for antibodies and small molecules, these findings may not only provide diagnostic and prognostic markers but also new therapeutic opportunities in breast and prostate cancer.
Resumo:
OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.
Resumo:
Background: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. Methods: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). Results: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03–1.16] for the A/G genotype and 1.17 (95% CI, 1.05–1.30) for the G/G genotype (P = 1.6 × 10−4 in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04–1.18) and 1.21 (1.08–1.35), respectively (P = 2.4 × 10−5). Conclusions: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. Impact: This study identified a potential genetic locus for endometrial cancer risk
Resumo:
Objective There is evidence that folate metabolism has a role in migraine pathophysiology, particularly in the migraine with aura subtype. In this study we investigate whether two non-synonymous single nucleotide polymorphisms (SNPs), rs1950902 (C401T; R134K) and rs2236225 (G1958A; R653Q), in MTHDF1 are associated with migraine in an Australian case-control population. Background Increased plasma levels of homocysteine (HCy), one of the metabolites produced in the folate pathway, has been found to be a risk factor for migraine. There is also a genetic link, as a common polymorphism (C667T) that reduces the catalytic activity of MTHFR, the enzyme that catalyses the formation of HCy, is associated with an increase in risk of the migraine with aura (MA) subtype. MTHFD1 is a crucial multifunctional enzyme that catalyses three separate reactions of the folate pathway and therefore variants in MTHFD1 may also influence migraine susceptibility. Methods The R134K and R653Q variants in MTHFD1 were genotyped in an Australian cohort of 520 unrelated migraineurs (162 were diagnosed with migraine without aura [MO] and 358 with MA) and 520 matched controls. Data were analysed for association with migraine and for interaction with the MTHFR C667T polymorphism. Results We find no significant differences in genotype or allele frequencies for either SNP between migraineurs and controls, or when either MO or MA cases were compared to controls. In addition these MTHFD1 polymorphisms did not appear to influence the risk of MA conferred by the MTHFR 667T allele. Conclusions We find no evidence for association of the MTHFD1 R134K and R653Q polymorphisms with migraine in our Australian case-control population. However, as folate metabolism appears to be important in migraine, particularly with respect to the aura component, future studies using high throughput methods to expand the number of SNPs in folate-related genes genotyped and investigation of interactions between SNPs may be justified.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes-PRDM16, PAX3, TP63, C5orf50, and COL17A1-in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.
Resumo:
A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001−0.031). Individually, they explained 2.6−4.8 % of the genetic variance (R2=0.026−0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.
Resumo:
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10 -11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
Objective: To identify genetic associations with severity of radiographic damage in ankylosing spondylitis (AS). Method: We studied 1537 AS cases of European descent; all fulfilled the modified New York Criteria. Radiographic severity was assessed from digitised lateral radiographs of the cervical and lumbar spine using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A two-phase genotyping design was used. In phase 1, 498 single nucleotide polymorphisms (SNPs) were genotyped in 688 cases; these were selected to capture >90% of the common haplotypic variation in the exons, exon-intron boundaries, and 5 kb flanking DNA in the 5' and 3' UTR of 74 genes involved in anabolic or catabolic bone pathways. In phase 2, 15 SNPs exhibiting p<0.05 were genotyped in a further cohort of 830 AS cases; results were analysed both separately and in combination with the discovery phase data. Association was tested by contingency tables after separating the samples into 'mild' and 'severe' groups, defined as the bottom and top 40% by mSASSS, adjusted for gender and disease duration. Results: Experiment-wise association was observed with the SNP rs8092336 (combined OR 0.32, p=1.2×10-5), which lies within RANK (receptor activator of NF?B), a gene involved in osteoclastogenesis, and in the interaction between T cells and dendritic cells. Association was also found with the SNP rs1236913 in PTGS1 (prostaglandin-endoperoxide synthase 1, cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10-3). There was no observed association between radiographic severity and HLA-B*27. Conclusions: These findings support roles for bone resorption and prostaglandins pathways in the osteoproliferative changes in AS.