263 resultados para flight capacity
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
Temporal variations caused by pedestrian movement can significantly affect the channel capacity of indoor MIMOOFDM wireless systems. This paper compares systematic measurements of MIMO-OFDM channel capacity in presence of pedestrians with predicted MIMO-OFDM channel capacity values using geometric optics-based ray tracing techniques. Capacity results are presented for a single room environment using 5.2 GHz with 2x2, 3x3 and 4x4 arrays as well as a 2.45 GHz narrowband 8x8 MIMO array. The analysis shows an increase of up to 2 b/s/Hz on instant channel capacity with up to 3 pedestrians. There is an increase of up to 1 b/s/Hz in the average capacity of the 4x4 MIMO-OFDM channel when the number of pedestrians goes from 1 to 3. Additionally, an increment of up to 2.5 b/s/Hz in MIMO-OFDM channel capacity was measured for a 4x4 array compared to a 2x2 array in presence of pedestrians. Channel capacity values derived from this analysis are important in terms of understanding the limitations and possibilities for MIMO-OFDM systems in indoor populated environments.
Resumo:
Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been the key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Web-based Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these web-based tools for collaborative decision making.
Resumo:
The purpose of this paper is to gain a better understanding of the types of relational capabilities supply chain participants develop to enable ongoing supply chain innovation capacity building that produces improved business outcomes. This is exploratory research using qualitative data gathered by using five interviews, with the Australian road freight industry as the context. Two key relational capabilities and the improvement of four key business outcomes were identified as being present in the interaction of freight transport service providers with members of their supply chain. The data also demonstrates that by entering into competence building relationships with customers and suppliers firms can build capabilities that will increase their capacity for supply chain innovation. Even in short term arm’s length relationships firms can acquire improved skills behaviours and practices that enhance their operation effectiveness and the efficiency of the supply chain relationships.
Resumo:
Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
We investigate Multiple-Input and Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems behavior in indoor populated environments that have line-of-site (LoS) between transmitter and receiver arrays. The in-house built MIMO-OFDM packet transmission demonstrator, equipped with four transmitters and four receivers, has been utilized to perform channel measurements at 5.2 GHz. Measurements have been performed using 0 to 3 pedestrians with different antenna arrays (2 £ 2, 3 £ 3 and 4 £ 4). The maximum average capacity for the 2x2 deterministic Fixed SNR scenario is 8.5 dB compared to the 4x4 deterministic scenario that has a maximum average capacity of 16.2 dB, thus an increment of 8 dB in average capacity has been measured when the array size increases from 2x2 to 4x4. In addition a regular variation has been observed for Random scenarios compared to the deterministic scenarios. An incremental trend in average channel capacity for both deterministic and random pedestrian movements has been observed with increasing number of pedestrian and antennas. In deterministic scenarios, the variations in average channel capacity are more noticeable than for the random scenarios due to a more prolonged and controlled body-shadowing effect. Moreover due to the frequent Los blocking and fixed transmission power a slight decrement have been observed in the spread between the maximum and minimum capacity with random fixed Tx power scenario.
Resumo:
Current approaches to managing and supporting staff and addressing turnover in child protection predominantly rely on deficit-based models that focus on limitations, shortcomings, and psychopathology. This article explores an alternative approach, drawing on models of resilience, which is an emerging field linked to trauma and adversity. To date, the concept of resilience has seen limited application to staff and employment issues. In child protection, staff typically face a range of adverse and traumatic experiences that have flow-on implications, creating difficulties for staff recruitment and retention and reduced service quality. This article commences with discussion of the multifactorial influences of the troubled state of contemporary child protection systems on staffing problems. Links between these and difficulties with the predominant deficit models are then considered. The article concludes with a discussion of the relevance and utility of resilience models in developing alternative approaches to child protection staffing issues.