346 resultados para alternative stable states
Resumo:
The decision as to which procurement system to adopt is a complex and challenging task for clients of construction projects. Despite a plethora of tools and techniques available for selecting a procurement method, clients are still uncertain about what method to adopt for a given construction project to achieve success. This paper examines ‘how and why’ procurement methods are selected by public sector clients in Queensland (QLD) and Western Australia (WA). Findings from workshops with senior managers in procurement selection revealed that traditional lump sum methods (TLS) are preferred even though alternative forms could be better suited for a given project. Participants of the workshops agreed that alternative procurement forms should be considered for projects but an embedded culture of uncertainty avoidance meant the selection of TLS methods. It was perceived that only a limited number of contractors operating in the marketplace have the resources and experience to deliver projects using the non-traditional methods.
Resumo:
With increasing revenues for video game manufacturers, higher software sales and a more diverse audience, the video games industry has been experiencing strong and rapid growth in recent times, rivalling other forms of entertainment. As a result, games have begun to attract the attention of marketing practitioners who are finding it increasingly difficult to attract consumer attention, and are seeking alternative media for marketing communications. This paper provides a review of the video games industry in the United States and raises the question as to whether games are a viable new medium for marketing messages. Areas for research are identified.
Resumo:
Food insecurity is the limited access to, or availability of, nutritious, culturally-appropriate and safe foods, or the inability to access these foods by socially acceptable means. In Australia, the monitoring of food insecurity is limited to the use of a single item, included in the three-yearly National Health Survey (NHS). The current research comprised a) a review of the literature and available tools to measure food security, b) piloting and adaptation of the more comprehensive 16-item United States Department of Agriculture (USDA) Food Security Survey Module (FSSM), and c) a cross-sectional study comparing this more comprehensive tool, and it’s 10- and 6- item short forms, with the current single-item used in the NHS, among a sample of households in disadvantaged urban-areas of Brisbane, Australia. Findings have shown that internationally the 16-item USDA-FSSM is the most widely used tool for the measurement of food insecurity. Furthermore, of the validated tools that exist to measure food insecurity, sensitivity and reliability decline as the number of questions in a tool decreases. Among an Australian sample, the current single-measure utilised in the NHS yielded a significantly lower prevalence for food insecurity compared to the 16-item USDA-FSSM and it’s two shorter forms respectively (four and two percentage points lower respectively). These findings suggest that the current prevalence of food insecurity (estimated at 6% in the most recent NHS) may have been underestimated, and have important implications for the development of an effective means of monitoring food security within the context of a developed country.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation, The mechanisms of these processes have been elucidated by a combination of product ion and labelling (H-2 and C-13) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of 'C4H8' is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of 'C6H12' occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-l-ene and hex-l-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-l-ene and hex-l-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].
Resumo:
Health policy interventions provide powerful tools for addressing health disparities. The Latino community is one of the fastest growing communities in the United States yet is largely underrepresented in government and advocacy efforts. This study includes 42 Latino adults (M age 5 45 years) who participated in focus group discussions and completed a brief questionnaire assessing their experiences with political health advocacy. Qualitative analyses revealed participants considered cancer a concern for the Latino community, but there was a lack of familiarity with political advocacy and its role in cancer control. Participants identified structural, practical, cultural, and contextual barriers to engaging in political health advocacy. This article presents a summary of the findings that suggest alternative ways to engage Latinos in cancer control advocacy.
Resumo:
This article considers the merits of alternative policy approaches to management of companies in insolvency administration, in particular from an identity economics theoretical perspective. The use of this perspective provides a novel assessment of the policy alternatives for insolvency administration, which can be characterized as either following the more flexible United States Chapter 11-style debtor-in-possession arrangement, or relying on the appointment of an external administrator or trustee to manage the insolvent company who automatically displaces incumbent management. This analysis indicates that stigma and reputational damage from automatic removal of managers in voluntary administration leaders to "identity loss" and that an insider alternative to the current external administration approach could be a beneficial policy change.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin-orbit coupling, producing a large nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSHphase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.
Resumo:
In 2001 the International Law Commission finally adopted on second reading the Draft Articles on Responsibility of States for Internationally Wrongful Acts with commentaries, bringing to an end nearly 50 years of ILC work on the subject. This article reviews the final group of changes to the text, focusing on the definitions of ‘injury’ and ‘damage’, assurances of non‐repetition in the light of the