135 resultados para Transcranial magnetic stimulation
Resumo:
Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.
Resumo:
Impairments in social cognitive functioning are well documented in schizophrenia, however the neural basis of these deficits is unclear. A recent explanatory model of social cognition centers upon the activity of mirror neurons, which are cortical brain cells that become active during both the performance and observation of behavior. Here, we test for the first time whether mirror neuron functioning is reduced in schizophrenia. Fifteen individuals with schizophrenia or schizoaffective disorder and fifteen healthy controls completed a transcranial magnetic stimulation (TMS) experiment designed to assess mirror neuron activation. While patients demonstrated no abnormalities in cortical excitability, motor facilitation during action observation, putatively reflecting mirror neuron activity, was reduced in schizophrenia. Dysfunction within the mirror neuron system may contribute to the pathophysiology of schizophrenia.
Resumo:
Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS) impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI). We employed a single subject, cross-over, sham-tDCS controlled design, and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI, which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioral stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS effects on brain functions in aphasia.
Resumo:
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCLTCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCLTCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCLTCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCLTCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCLTCP/collagen < mPCLTCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCLTCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.
Resumo:
Key points The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.