984 resultados para Tagging social


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A common problem with the use of tensor modeling in generating quality recommendations for large datasets is scalability. In this paper, we propose the Tensor-based Recommendation using Probabilistic Ranking method that generates the reconstructed tensor using block-striped parallel matrix multiplication and then probabilistically calculates the preferences of user to rank the recommended items. Empirical analysis on two real-world datasets shows that the proposed method is scalable for large tensor datasets and is able to outperform the benchmarking methods in terms of accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tagging has become one of the key activities in next generation websites which allow users selecting short labels to annotate, manage, and share multimedia information such as photos, videos and bookmarks. Tagging does not require users any prior training before participating in the annotation activities as they can freely choose any terms which best represent the semantic of contents without worrying about any formal structure or ontology. However, the practice of free-form tagging can lead to several problems, such as synonymy, polysemy and ambiguity, which potentially increase the complexity of managing the tags and retrieving information. To solve these problems, this research aims to construct a lightweight indexing scheme to structure tags by identifying and disambiguating the meaning of terms and construct a knowledge base or dictionary. News has been chosen as the primary domain of application to demonstrate the benefits of using structured tags for managing the rapidly changing and dynamic nature of news information. One of the main outcomes of this work is an automatically constructed vocabulary that defines the meaning of each named entity tag, which can be extracted from a news article (including person, location and organisation), based on experts suggestions from major search engines and the knowledge from public database such as Wikipedia. To demonstrate the potential applications of the vocabulary, we have used it to provide more functionalities in an online news website, including topic-based news reading, intuitive tagging, clipping and sharing of interesting news, as well as news filtering or searching based on named entity tags. The evaluation results on the impact of disambiguating tags have shown that the vocabulary can help to significantly improve news searching performance. The preliminary results from our user study have demonstrated that users can benefit from the additional functionalities on the news websites as they are able to retrieve more relevant news, clip and share news with friends and families effectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing when to compete and when to cooperate to maximize opportunities for equal access to activities and materials in groups is critical to children's social and cognitive development. The present study examined the individual (gender, social competence) and contextual factors (gender context) that may determine why some children are more successful than others. One hundred and fifty-six children (M age=6.5 years) were divided into 39 groups of four and videotaped while engaged in a task that required them to cooperate in order to view cartoons. Children within all groups were unfamiliar to one another. Groups varied in gender composition (all girls, all boys, or mixed-sex) and social competence (high vs. low). Group composition by gender interaction effects were found. Girls were most successful at gaining viewing time in same-sex groups, and least successful in mixed-sex groups. Conversely, boys were least successful in same-sex groups and most successful in mixed-sex groups. Similar results were also found at the group level of analysis; however, the way in which the resources were distributed differed as a function of group type. Same-sex girl groups were inequitable but efficient whereas same-sex boy groups were more equitable than mixed groups but inefficient compared to same-sex girl groups. Social competence did not influence children's behavior. The findings from the present study highlight the effect of gender context on cooperation and competition and the relevance of adopting an unfamiliar peer paradigm when investigating children's social behavior.