550 resultados para Spatial order
Resumo:
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.
Resumo:
Many cities worldwide face the prospect of major transformation as the world moves towards a global information order. In this new era, urban economies are being radically altered by dynamic processes of economic and spatial restructuring. The result is the creation of ‘informational cities’ or its new and more popular name, ‘knowledge cities’. For the last two centuries, social production had been primarily understood and shaped by neo-classical economic thought that recognized only three factors of production: land, labor and capital. Knowledge, education, and intellectual capacity were secondary, if not incidental, factors. Human capital was assumed to be either embedded in labor or just one of numerous categories of capital. In the last decades, it has become apparent that knowledge is sufficiently important to deserve recognition as a fourth factor of production. Knowledge and information and the social and technological settings for their production and communication are now seen as keys to development and economic prosperity. The rise of knowledge-based opportunity has, in many cases, been accompanied by a concomitant decline in traditional industrial activity. The replacement of physical commodity production by more abstract forms of production (e.g. information, ideas, and knowledge) has, however paradoxically, reinforced the importance of central places and led to the formation of knowledge cities. Knowledge is produced, marketed and exchanged mainly in cities. Therefore, knowledge cities aim to assist decision-makers in making their cities compatible with the knowledge economy and thus able to compete with other cities. Knowledge cities enable their citizens to foster knowledge creation, knowledge exchange and innovation. They also encourage the continuous creation, sharing, evaluation, renewal and update of knowledge. To compete nationally and internationally, cities need knowledge infrastructures (e.g. universities, research and development institutes); a concentration of well-educated people; technological, mainly electronic, infrastructure; and connections to the global economy (e.g. international companies and finance institutions for trade and investment). Moreover, they must possess the people and things necessary for the production of knowledge and, as importantly, function as breeding grounds for talent and innovation. The economy of a knowledge city creates high value-added products using research, technology, and brainpower. Private and the public sectors value knowledge, spend money on its discovery and dissemination and, ultimately, harness it to create goods and services. Although many cities call themselves knowledge cities, currently, only a few cities around the world (e.g., Barcelona, Delft, Dublin, Montreal, Munich, and Stockholm) have earned that label. Many other cities aspire to the status of knowledge city through urban development programs that target knowledge-based urban development. Examples include Copenhagen, Dubai, Manchester, Melbourne, Monterrey, Singapore, and Shanghai. Knowledge-Based Urban Development To date, the development of most knowledge cities has proceeded organically as a dependent and derivative effect of global market forces. Urban and regional planning has responded slowly, and sometimes not at all, to the challenges and the opportunities of the knowledge city. That is changing, however. Knowledge-based urban development potentially brings both economic prosperity and a sustainable socio-spatial order. Its goal is to produce and circulate abstract work. The globalization of the world in the last decades of the twentieth century was a dialectical process. On one hand, as the tyranny of distance was eroded, economic networks of production and consumption were constituted at a global scale. At the same time, spatial proximity remained as important as ever, if not more so, for knowledge-based urban development. Mediated by information and communication technology, personal contact, and the medium of tacit knowledge, organizational and institutional interactions are still closely associated with spatial proximity. The clustering of knowledge production is essential for fostering innovation and wealth creation. The social benefits of knowledge-based urban development extend beyond aggregate economic growth. On the one hand is the possibility of a particularly resilient form of urban development secured in a network of connections anchored at local, national, and global coordinates. On the other hand, quality of place and life, defined by the level of public service (e.g. health and education) and by the conservation and development of the cultural, aesthetic and ecological values give cities their character and attract or repel the creative class of knowledge workers, is a prerequisite for successful knowledge-based urban development. The goal is a secure economy in a human setting: in short, smart growth or sustainable urban development.
Resumo:
Knowledge based urban development (KBUD) is a new paradigm in urban planning tailoring to the era of knowledge economy. It aims mainly to assist a contemporary city to promote a more sustainable socio-spatial order. The paper reports on the investigation of KBUD initiative in Malaysia which is manifested through the establishment of a project called Multimedia Super Corridor (MSC). MSC Malaysia aims to attract knowledge workers and industries to invest and operate within the area by creating a world class urban corridor with state-of-the-art multimedia infrastructure, efficient transportation system and an attractive living environment. Based on documents analysis and interviews, this paper analyses the strategies, implementations, and achievements of KBUD initiative in Cyberjaya, being the leading intelligent city of the unique Malaysia’s KBUD project-MSC Malaysia. A critical evaluation is made to assess the achievements of MSC, by looking at the physical changes after about ten years since its official launching. The findings recommend some valuable lessons for other cities that strive to develop KBUD strategies, strengthen their sustainable socio-spatial policies, and seek a global recognition.
Resumo:
How do we create strong urban narratives? How do we create affection for our cities? Play, an essential part of any species' biological existence and development, can often be perceived as chaotic and derogatory to social and spatial order. Play is also often perceived as a creative force which generates social and spatial value. This paper looks at the design approaches to both chaotic and creative perceptions of publics at play in urban space. Commonly, Urban and Architectural Design constitutes reactive management of perceived chaos, which derogatorily effects our sensory and emotional engagement with space. Alternatively, Urban and Architectural Design can appeal to the creativity of play, by encouraging unsolicited novelty that is vital to strong experiential narratives in the city and iterating environments that encourage the emergence of physical, emotional and cultural invention. These perceptions of chaos and creativity affect the design methodology of professional practice. Tested through the exciting vehicle of Parkour as urban narrative, the constraints and opportunities of both approaches are presented.
Resumo:
In recent years, with the impact of global knowledge economy, a more comprehensive development approach has gained significant popularity. This new development approach, so called ‘knowledge-based urban development’, is different from its traditional predecessor. With a much more balanced focus on all of the four key development domains – economic, spatial, institutional, and socio-cultural – this contemporary approach, aims to bring economic prosperity, environmental sustainability and local institutional competence with a just socio-spatial order to our cities and regions. The ultimate goal of knowledgebased urban development is to produce a city purposefully designed to encourage the continuous production, circulation and commercialization of social and scientific knowledge – this will in turn establish a ‘knowledge city’. A city following the ‘knowledge city’ concept embarks on a strategic mission to firmly encourage and nurture locally focused innovation, science and creativity within the context of an expanding knowledge economy and society. In this regard a ‘knowledge city’ can be seen as an integrated city, which physically and institutionally combines the functions of a science and technology park with civic and residential functions and urban amenities. It also offers one of the effective paradigms for the sustainable cities of our time. This sixth edition of KCWS – The 6th Knowledge Cities World Summit 2013 – makes an important reminder that the ‘knowledge city’ concept is a key notion in the 21st Century development. Considering this notion, the Summit sheds light on the multifaceted dimensions and various scales of building a ‘knowledge city’ via ‘knowledge-based urban development’ paradigm by particularly focusing on the overall Summit theme of ‘Establishing Bridges’. At this summit, the theoretical and practical maturing of knowledge-based development paradigms are advanced through the interplay between the world’s leading academics’ theories and the practical models and strategies of practitioners’ and policy makers’ drawn from around the world. This summit proceeding is compiled in order to disseminate the knowledge generated and shared in KCWS 2013 with the wider research, governance, and practice communities the knowledge co-created in this summit. All papers of this proceeding have gone through a double-blind peer review process and been reviewed by our summit editorial review and advisory board members. We, organizers of the summit, cordially thank the members of the Summit Proceeding Editorial Review and Advisory Board for their diligent work in the review of the papers. Also we thank Prof.Dr. Ahmet Ademoğlu, Rector of İstanbul Şehir University, for providing all the support for the Summit. We hope the papers in this proceeding will inspire and make a significant contribution to the research, governance, and practice circles.
Resumo:
In the 21st century, it has become apparent that ‘knowledge’ is a major factor of postmodern production (Yigitcanlar et al., 2007). Beyond this, in today’s rapidly globalizing world, knowledge, along with the social and technological settings, is seen as a key to secure economic prosperity and quality of life (Yigitcanlar et al., 2008a). However, limiting the benefits of a ‘knowledge-based development’ to only economic gains—and to a degree to social ones—is quite a narrow sighted view (Yigitcanlar et al., 2008b). Thus, the concept of ‘knowledge-based urban development’ is coined to bring economic prosperity, environmental sustainability, a just socio-spatial order and good governance to cities, and as a result producing a purposefully designed city—i.e., ‘knowledge city’—generating positive environmental and governance outcomes as well as economic and societal ones (Yigitcanlar, 2011; Carrillo et al., 2014).
Resumo:
FROM KCWS 2011 CHAIRS AND SUMMIT PROCEEDING EDITORS In recent years, with the impact of global knowledge economy, a more comprehensive development approach has gained significant popularity. This new development approach, so called ‘knowledgebased development’, is different from its traditional predecessor. With a much more balanced focus on all of the four key development domains – economic, enviro-urban, institutional, and sociocultural – this contemporary approach, aims to bring economic prosperity, environmental sustainability and local institutional competence with a just socio-spatial order to our cities and regions. The ultimate goal of knowledge-based development is to produce a city purposefully designed to encourage the continuous production, circulation and commercialisation of social and scientific knowledge – this will in turn establish a ‘knowledge city’. A city following the ‘knowledge city’ concept embarks on a strategic mission to firmly encourage and nurture locally focussed innovation, science and creativity within the context of an expanding knowledge economy and society. In this regard a ‘knowledge city’ can be seen as an integrated city, which physically and institutionally combines the functions of a science and technology park with civic and residential functions and urban amenities. It also offers one of the effective paradigms for the sustainable cities of our time. This fourth edition of KCWS – The 4th Knowledge Cities World Summit 2011 – makes an important reminder that the 'knowledge city' concept is a key notion in the 21st Century development. Considering this notion, the Summit sheds light on the multi-faceted dimensions and various scales of building a ‘knowledge city’ via 'knowledge-based development' paradigm by particularly focusing on the overall Summit theme of ‘Knowledge Cities for Future Generations’. At this summit, the theoretical and practical maturing of knowledge-based development paradigms are advanced through the interplay between the world’s leading academics’ theories and the practical models and strategies of practitioners’ and policy makers’ drawn from around the world. This summit proceeding is compiled in order to disseminate the knowledge generated and shared in KCWS 2011 with the wider research, governance, and practice communities the knowledge cocreated in this summit. All papers of this proceeding have gone through a double-blind peer review process and been reviewed by our summit editorial review and advisory board members. We, organisers of the summit, cordially thank the members of the Summit Proceeding Editorial Review and Advisory Board for their diligent work in the review of the papers. We hope the papers in this proceeding will inspire and make a significant contribution to the research, governance, and practice circles.
Resumo:
The changing and challenging conditions of the 21st century have been significantly impacting our economy, society and built and natural environments. Today generation of knowledge—mostly in the form of technology and innovation—is seen as a panacea for the adaptation to changes and management of challenges (Yigitcanlar, 2010a). Making space and place that concentrate on knowledge generation, thus, has become a priority for many nations (van Winden, 2010). Along with this movement, concepts like knowledge cities and knowledge precincts are coined as places where citizenship undertakes a deliberate and systematic initiative for founding its development on the identification and sustainable balance of its shared value system, and bases its ability to create wealth on its capacity to generate and leverage its knowledge capabilities (Carrillo, 2006; Yigitcanlar, 2008a). In recent years, the term knowledge precinct (Hu & Chang, 2005) in its most contemporary interpretation evolved into knowledge community precinct (KCP). KCP is a mixed-use post-modern urban setting—e.g., flexible, decontextualized, enclaved, fragmented—including a critical mass of knowledge enterprises and advanced networked infrastructures, developed with the aim of collecting the benefits of blurring the boundaries of living, shopping, recreation and working facilities of knowledge workers and their families. KCPs are the critical building blocks of knowledge cities, and thus, building successful KCPs significantly contributes to the formation of prosperous knowledge cities. In the literature this type of development—a place containing economic prosperity, environmental sustainability, just socio‐spatial order and good governance—is referred as knowledge-based urban development (KBUD). This chapter aims to provide a conceptual understanding on KBUD and its contribution to the building of KCPs that supports the formation of prosperous knowledge cities.
Resumo:
Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.
Resumo:
Investment begins with imagining that doing something new in the present will lead to a better future. Investment can vary from incidental improvements as safe and beneficial side-effects of current activity through to a more dedicated and riskier disinvestment in current methods of operation and reinvestment in new processes and products. The role of government has an underlying continuity determined by its constitution that authorises a parliament to legislate for peace, order and good government. ‘Good government’ is usually interpreted as improving the living standards of its citizens. The requirements for social order and social cohesion suggest that improvements should be shared fairly by all citizens through all of their lives. Arguably, the need to maintain an individual’s metabolism has a social counterpart in the ‘collective metabolism’ of a sustainable and productive society.