85 resultados para Sequence Analysis
Resumo:
Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]
Resumo:
Originally developed in bioinformatics, sequence analysis is being increasingly used in social sciences for the study of life-course processes. The methodology generally employed consists in computing dissimilarities between the trajectories and, if typologies are sought, in clustering the trajectories according to their similarities or dissemblances. The choice of an appropriate dissimilarity measure is a major issue when dealing with sequence analysis for life sequences. Several dissimilarities are available in the literature, but neither of them succeeds to become indisputable. In this paper, instead of deciding upon one dissimilarity measure, we propose to use an optimal convex combination of different dissimilarities. The optimality is automatically determined by the clustering procedure and is defined with respect to the within-class variance.
Resumo:
Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.
Resumo:
Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.
Resumo:
The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.
Resumo:
This study examined the effect that temporal order within the entrepreneurial discovery-exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.
Resumo:
Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation.
Resumo:
The koala (Phascolarctos cinereus) is an Australian marsupial that continues to experience significant population declines. Infectious diseases caused by pathogens such as Chlamydia are proposed to have a major role. Very few species-specific immunological reagents are available, severely hindering our ability to respond to the threat of infectious diseases in the koala. In this study, we utilise data from the sequencing of the koala transcriptome to identify key immunological markers of the koala adaptive immune response and cytokines known to be important in the host response to chlamydial infection in other species. This report describes the identification and preliminary sequence analysis of (1) T lymphocyte glycoprotein markers (CD4, CD8); (2) IL-4, a marker for the Th2 response; (3) cytokines such as IL-6, IL-12 and IL-1β, that have been shown to have a role in chlamydial clearance and pathology in other hosts; and (4) the sequences for the koala immunoglobulins, IgA, IgG, IgE and IgM. These sequences will enable the development of a range of immunological reagents for understanding the koala’s innate and adaptive immune responses, while also providing a resource that will enable continued investigations into the origin and evolution of the marsupial immune system.
Resumo:
Biomineralization is a process encompassing all mineral containing tissues produced within an organism. The most dynamic example of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this remarkable architecture. Subsequently, for the past decade considerable research have been undertaken to identify and characterize the protein components involved in biomineralization. Despite these efforts the general understanding of the process remains ambiguous. This study employs a novel molecular approach to further the elucidation of the shell biomineralization. A microarray platform has been custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from the mantle, an organ involved in shell formation. This microarray has been used as the primary tool for three separate investigations in an effort to associate transcriptional gene expression from P. maxima to the process of shell biomineralization. The first investigation analyzes the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and each analyzed for gene expression with PmaxArray 1.0. Over 2000 ESTs were differentially expressed among the tissue sections, identifying five major expression regions. Three of these regions have been proposed to have shell formation functions belonging to nacre, prismatic calcite and periostracum. The spatial gene expression map was confirmed by in situ hybridization, localizing a subset of ESTs from each expression region to the same mantle area. Comparative sequence analysis of ESTs expressed in the proposed shell formation regions with the BLAST tool, revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell formation genes. The second investigation correlates temporal EST expression during P. maxima larval ontogeny with transitions in shell mineralization during the same period. A timeline documenting the morphologicat microstructural and mineralogical shell characteristics of P. maxima throughout larval ontogeny has been established. Three different shell types were noted based on the physical characters and termed, prodissoconch I, prodissoconch 11 and dissoconch. PmaxArray 1.0 analyzed ESTs expression of animals throughout the larval development of P. maxima, noting up-regulation of 359 ESTs in association with the shell transitions from prodissoconch 1 to prodissoconch 11 to dissoconch. Comparative sequence analysis of these ESTs indicates a number of the transcripts are novel as well as showing significant sequence similarities between ESTs and known shell matrix associated genes and proteins. These ESTs are discussed in relation to the shell characters associated with their temporal expression. The third investigation uses PmaxArray 1.0 to analyze gene expression in the mantle tissue of P. maxima specimens exposed to sub-lethal concentrations of a shell-deforming toxin, tributyltin (TBT). The shell specific effects of TBT are used in this investigation to interpret differential expression of ESTs with respect to shell formation functions. A lethal and sublethal TBT concentration range was established for P. maxima, noting a concentration of 50 ng L- 1 TBT as sub-lethal over a 21 day period. Mantle tissue from P. maxima animals treated with 50 ng L- 1 TBT was assessed for differential EST expression with untreated control animals. A total of 102 ESTs were identified as differentially expressed in association with TBT exposure, comparative sequence identities included an up-regulation of immunity and detoxification related genes and down-regulation of several shell matrix genes. A number of transcripts encoding novel peptides were additionally identified. The potential actions of these genes are discussed with reference to TBT toxicity and shell biomineralization. This thesis has used a microarray platform to analyze gene expression in spatial, temporal and toxicity investigations, revealing the involvement of numerous gene transcripts in specific shell formation functions. Investigation of thousands of transcripts simultaneously has provided a holistic interpretation of the organic components regulating shell biomineralization.