667 resultados para Scheduling models


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, an interactive planning and scheduling framework are proposed for optimising operations from pits to crushers in ore mining industry. Series of theoretical and practical operations research techniques are investigated to improve the overall efficiency of mining systems due to the facts that mining managers need to tackle optimisation problems within different horizons and with different levels of detail. Under this framework, mine design planning,mine production sequencing and mine transportation scheduling models are integrated and interacted within a whole optimisation system. The proposed integrated framework could be used by mining industry for reducing equipment costs, improving the production efficiency and maximising the net present value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

More evenly spread demand for public transport throughout a day can reduce transit service provider‟s total asset and labour costs. A plausible peak spreading strategy is to increase peak fare and/or to reduce off-peak fare. This paper reviews relevant empirical studies for urban rail systems, as rail transit plays a key role in Australian urban passenger transport and experiences severe peak loading variability. The literature is categorised into four groups: a) passenger opinions on willingness to change time for travel, b) valuations of displacement time using stated preference technique, c) simulations of peak spreading based on trip scheduling models, and: d) real-world cases of peak spreading using differential fare. Policy prescription is advised to take into account impacts of traveller‟s time flexibility and joint effects of mode shifting and peak spreading. Although focusing on urban rail, arguments in this paper are relevant to public transport in general with values to researchers and practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the train scheduling problem is modelled as a blocking parallel-machine job shop scheduling (BPMJSS) problem. In the model, trains, single-track sections and multiple-track sections, respectively, are synonymous with jobs, single machines and parallel machines, and an operation is regarded as the movement/traversal of a train across a section. Due to the lack of buffer space, the real-life case should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold the train until next section on the routing becomes available. Based on literature review and our analysis, it is very hard to find a feasible complete schedule directly for BPMJSS problems. Firstly, a parallel-machine job-shop-scheduling (PMJSS) problem is solved by an improved shifting bottleneck procedure (SBP) algorithm without considering blocking conditions. Inspired by the proposed SBP algorithm, feasibility satisfaction procedure (FSP) algorithm is developed to solve and analyse the BPMJSS problem, by an alternative graph model that is an extension of the classical disjunctive graph models. The proposed algorithms have been implemented and validated using real-world data from Queensland Rail. Sensitivity analysis has been applied by considering train length, upgrading track sections, increasing train speed and changing bottleneck sections. The outcomes show that the proposed methodology would be a very useful tool for the real-life train scheduling problems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ICU is an integral part of any hospital and is under great load from patient arrivals as well as resource limitations. Scheduling of patients in the ICU is complicated by the two general types; elective surgery and emergency arrivals. This complicated situation is handled by creating a tentative initial schedule and then reacting to uncertain arrivals as they occur. For most hospitals there is little or no flexibility in the number of beds that are available for use now or in the future. We propose an integer programming model to handle a parallel machine reacting system for scheduled and unscheduled arrivals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A schedule coordination problem involving two train services provided by different operators is modeled as an optimization of revenue intake. The coordination is achieved through the adjustment of commencement times of the train services by negotiation. The problem is subject to constraints regarding to passenger demands and idle costs of rolling-stocks from both operators. This paper models the operators as software agents having the flexibility to incorporate one of the two (and potentially more) proposed negotiation strategies. Empirical results show that agents employing different combination of strategies have significant impact on the quality of solution and negotiation time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addressing the Crew Scheduling Problem (CSP) in transportation systems can be too complex to capture all details. The designed models usually ignore or simplify features which are difficult to formulate. This paper proposes an alternative formulation using a Mixed Integer Programming (MIP) approach to the problem. The optimisation model integrates the two phases of pairing generation and pairing optimisation by simultaneously sequencing trips into feasible duties and minimising total elapsed time of any duty. Crew scheduling constraints in which the crew have to return to their home depot at the end of the shift are included in the model. The flexibility of this model comes in the inclusion of the time interval of relief opportunities, allowing the crew to be relieved during a finite time interval. This will enhance the robustness of the schedule and provide a better representation of real-world conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project developed three mathematical models for scheduling ambulances and ambulance crews and proceeded to solve each model for test scenarios based on real data. Results from these models can serve as decision aids for dispatching or relocating ambulances; and for strategic decisions on the ambulance crews needed each shift. This thesis used Flexible Flow Shop Scheduling techniques to formulate strategic, dynamic and real time models. Metaheuristic solutions techniques were applied for a case study with realistic data. These models are suitable for ambulance planners and dispatchers.