26 resultados para Salutati, Coluccio, 1331-1406.
Resumo:
Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.
Resumo:
Following the completion of the draft Human Genome in 2001, genomic sequence data is becoming available at an accelerating rate, fueled by advances in sequencing and computational technology. Meanwhile, large collections of astronomical and geospatial data have allowed the creation of virtual observatories, accessible throughout the world and requiring only commodity hardware. Through a combination of advances in data management, data mining and visualization, this infrastructure enables the development of new scientific and educational applications as diverse as galaxy classification and real-time tracking of earthquakes and volcanic plumes. In the present paper, we describe steps taken along a similar path towards a virtual observatory for genomes – an immersive three-dimensional visual navigation and query system for comparative genomic data.
Resumo:
In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.
Resumo:
We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.
Resumo:
The existing Collaborative Filtering (CF) technique that has been widely applied by e-commerce sites requires a large amount of ratings data to make meaningful recommendations. It is not directly applicable for recommending products that are not frequently purchased by users, such as cars and houses, as it is difficult to collect rating data for such products from the users. Many of the e-commerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user's query are retrieved and recommended to the user. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their online navigation behaviour. This paper proposes to integrate collaborative filtering and search-based techniques to provide personalized recommendations for infrequently purchased products. Two different techniques are proposed, namely CFRRobin and CFAg Query. Instead of using the target user's query to search for products as normal search based systems do, the CFRRobin technique uses the products in which the target user's neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAg Query technique uses the products that the user's neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAg Query perform better than the standard Collaborative Filtering (CF) and the Basic Search (BS) approaches, which are widely applied by the current e-commerce applications. The CFRRobin and CFAg Query approaches also outperform the e- isting query expansion (QE) technique that was proposed for recommending infrequently purchased products.
Resumo:
Nowadays, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes. A use case study is also presented in this paper to show the advantages of using OLAP and data cubes to analyze costumers’ opinions.
Resumo:
The rapid growth in the number of users using social networks and the information that a social network requires about their users make the traditional matching systems insufficiently adept at matching users within social networks. This paper introduces the use of clustering to form communities of users and, then, uses these communities to generate matches. Forming communities within a social network helps to reduce the number of users that the matching system needs to consider, and helps to overcome other problems from which social networks suffer, such as the absence of user activities' information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased using the community information.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
As ambient computing blends into the fabric of the modern urban environment developing a positive interplay between people, places, and technology to create enlivened, interactive cities becomes a necessary priority in how we imagine, understand, design, and develop cities. Designing technology for art, culture and gastronomic experiences, that are rich in community, can provide the means for collaborative action to (re)create cities that are lively, engaging, and promote a sense of well being as well as belonging.
Resumo:
Sequencing of mba gene fragments of reference strains of Ureaplasma urealyticum serovars 1, 3, 6, 14, in addition to 33 clinical U. urealyticum isolates is reported. A phylogenetic tree deduced from an alignment of these sequences clearly demonstrates two major clusters (confidence limit 100%), which equate to the parvo and T960 biovars, and five types which we have designated mba 1, 3, 6, 8 and X. These relationships are supported by bootstrap analysis. Polymorphisms within the mba fragment of types mba 1, 3, and 6 were used to define nine subtypes (mba 1a, 1b, 3a, 3b, 3c, 3d, 3e, 6a, and 6b) thus facilitating high resolution typing of U. urealyticum. Inclusion of the reference strains for serovars 1, 3, 6, and 8 in the mba typing scheme showed that the results of this analysis are broadly consistent with currently accepted serotyping. In addition a ure gene fragment from nine of the clinical isolates was amplified and sequenced. Comparisons of the sequences clearly distinguished the two biovars of U. urealyticum; however this fragment was invariant within the parvo biovar. This study has shown that the sequence of the mba can reveal the fine details of the relationships between U. urealyticum isolates and also supports the significant evolutionary gap between the two biovars.
Resumo:
As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. In order to enhance customer satisfaction and their shopping experiences, it has become important to analysis customers reviews to extract opinions on the products that they buy. Thus, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes.
Resumo:
Enterprise Systems (ES) can be understood as the de facto standard for holistic operational and managerial support within an organization. Most commonly ES are offered as commercial off-the-shelf packages, requiring customization in the user organization. This process is a complex and resource-intensive task, which often prevents small and midsize enterprises (SME) from undertaking configuration projects. Especially in the SME market independent software vendors provide pre-configured ES for a small customer base. The problem of ES configuration is shifted from the customer to the vendor, but remains critical. We argue that the yet unexplored link between process configuration and business document configuration must be closer examined as both types of configuration are closely tied to one another.