293 resultados para SAW gas sensors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt/nanostructured molybdenum oxide (MoO3) /SiC Schottky diode based gas sensors were fabricated for hydrogen (H2) gas sensing. Due to the enhanced performance, which is ascribed to the application of MoO3 nanostructures, these devices were used in reversed bias. MoO3 characterization by scanning electron microscopy showed morphology of randomly orientated nanoplatelets with thicknesses between 50 and 500 nm. An α-Β mixed phase crystallographic structure of MoO3 was characterized by x-ray diffraction. At 180 °C, 1.343 V voltage shift in the reverse I-V curve and a Pt/ MoO3 barrier height change of 20 meV were obtained after exposure to 1% H2 gas in synthetic air. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured WO3 thin films have been prepared by thermal evaporation to detect hydrogen at low temperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the development of novel Pt/nanostructured RuO2/SiC Schottky diode based sensors for hydrogen gas applications. The nanostructured ruthenium oxide thin films were deposited on SiC substrates using radio frequency sputtering technique. Scanning electron microscopy revealed the sputtered RuO2 layer consists of nano-cubular structures with dimensions ranging between 10 and 50 nm. X-ray diffraction confirmed the presence of tetragonal ruthenium (IV) oxide, with preferred orientation along the (101) lattice plane. The current-voltage characteristics of the sensors were investigated towards hydrogen gas in synthetic air at different temperatures from 25 °C to 240 °C. The dynamic responses of the sensors were studied at an optimum temperature of 240 °C and a voltage shift of 304 mV was recorded toward 1% hydrogen gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a comparative study of Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors is presented. MoO3 nanostructured films with three different morphologies (nanoplatelets, nanoplateletsnanowires and nano-flowers) were deposited on SiC by thermal evaporation. We compare the current-voltage characteristics and the dynamic response of these sensors as they are exposed to hydrogen gas at temperatures up to 250°C. Results indicate that the sensor based on MoO3 nanoflowers exhibited the highest sensitivity (in terms of a 5.79V voltage shift) towards 1% hydrogen; while the sensor based on MoO3 nanoplatelets showed the quickest response (t90%- 40s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured WO3 thin films have been prepared bythermal evaporation to detect hydrogen at low t emperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing. - See more at: http://dl4.globalstf.org/?wpsc-product=conductometric-gas-sensors-based-on-nanostructured-wo3-thin-films-2#sthash.IrfhlZ6H.dpuf

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, we have fabricated and tested conductometric sensors based on oxidized liquid galinstan towards NO2 and NH3 gases at low operating temperatures. Galinstan based films on silicon substrates have been studied with two different loadings. Surface morphology of the films was investigated by means of field emission scanning electron microscopy (FESEM). The sensor with higher galinstan loading showed a better sensitivity, which can be attributed to a higher surface area, as confirmed by SEM. At 100°C, a detection limit as low as 1 and 20 ppm was measured for NO2 and NH3, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.