278 resultados para Rented Vehicles.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Cooperative collision warning system for road vehicles, enabled by recent advances in positioning systems and wireless communication technologies, can potentially reduce traffic accident significantly. To improve the system, we propose a graph model to represent interactions between multiple road vehicles in a specific region and at a specific time. Given a list of vehicles in vicinity, we can generate the interaction graph using several rules that consider vehicle's properties such as position, speed, heading, etc. Safety applications can use the model to improve emergency warning accuracy and optimize wireless channel usage. The model allows us to develop some congestion control strategies for an efficient multi-hop broadcast protocol.
Resumo:
Traffic congestion is an increasing problem with high costs in financial, social and personal terms. These costs include psychological and physiological stress, aggressivity and fatigue caused by lengthy delays, and increased likelihood of road crashes. Reliable and accurate traffic information is essential for the development of traffic control and management strategies. Traffic information is mostly gathered from in-road vehicle detectors such as induction loops. Traffic Message Chanel (TMC) service is popular service which wirelessly send traffic information to drivers. Traffic probes have been used in many cities to increase traffic information accuracy. A simulation to estimate the number of probe vehicles required to increase the accuracy of traffic information in Brisbane is proposed. A meso level traffic simulator has been developed to facilitate the identification of the optimal number of probe vehicles required to achieve an acceptable level of traffic reporting accuracy. Our approach to determine the optimal number of probe vehicles required to meet quality of service requirements, is to simulate runs with varying numbers of traffic probes. The simulated traffic represents Brisbane’s typical morning traffic. The road maps used in simulation are Brisbane’s TMC maps complete with speed limits and traffic lights. Experimental results show that that the optimal number of probe vehicles required for providing a useful supplement to TMC (induction loop) data lies between 0.5% and 2.5% of vehicles on the road. With less probes than 0.25%, little additional information is provided, while for more probes than 5%, there is only a negligible affect on accuracy for increasingly many probes on the road. Our findings are consistent with on-going research work on traffic probes, and show the effectiveness of using probe vehicles to supplement induction loops for accurate and timely traffic information.
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of these presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.
Resumo:
Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine.
Resumo:
Acoustically, car cabins are extremely noisy and as a consequence, existing audio-only speech recognition systems, for voice-based control of vehicle functions such as the GPS based navigator, perform poorly. Audio-only speech recognition systems fail to make use of the visual modality of speech (eg: lip movements). As the visual modality is immune to acoustic noise, utilising this visual information in conjunction with an audio only speech recognition system has the potential to improve the accuracy of the system. The field of recognising speech using both auditory and visual inputs is known as Audio Visual Speech Recognition (AVSR). Continuous research in AVASR field has been ongoing for the past twenty-five years with notable progress being made. However, the practical deployment of AVASR systems for use in a variety of real-world applications has not yet emerged. The main reason is due to most research to date neglecting to address variabilities in the visual domain such as illumination and viewpoint in the design of the visual front-end of the AVSR system. In this paper we present an AVASR system in a real-world car environment using the AVICAR database [1], which is publicly available in-car database and we show that the use of visual speech conjunction with the audio modality is a better approach to improve the robustness and effectiveness of voice-only recognition systems in car cabin environments.
Resumo:
We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot’s state and perceived local environment that will ensure simple and safe operation in cluttered 3D environments common in inspection and surveillance tasks. Our approach is based on energetic considerations and uses the concepts of network theory and port-Hamiltonian systems. We provide a general framework for addressing problems such as mapping the limited stroke of a ‘master’ joystick to the infinite stroke of a ‘slave’ vehicle, while preserving passivity of the closed-loop system in the face of potential time delays in communications links and limited sensor data