611 resultados para Reflectors (Safety devices)
Resumo:
The study presented in this paper reviewed 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, in order to understand the relationships between the risk factors and injury severity (e.g. fatalities, hospitalized injuries, or non-hospitalized injuries) and to develop a strategic prevention plan to reduce the likelihood of fatalities where an accident is unavoidable. The study specifically aims to: (1) verify the relationships among risk factors, accident types, and injury severity, (2) determine significant risk factors associated with each accident type that are highly correlated to injury severity, and (3) analyze the impact of the identified key factors on accident and fatality occurrence. The analysis results explained that safety managers’ roles are critical to reducing human-related risks—particularly misjudgement of hazardous situations—through safety training and education, appropriate use of safety devices and proper safety inspection. However, for environment-related factors, the dominant risk factors were different depending on the different accident types. The outcomes of this study will assist safety managers to understand the nature of construction accidents and plan for strategic risk mitigation by prioritizing high frequency risk factors to effectively control accident occurrence and manage the likelihood of fatal injuries on construction sites.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
Several intelligent transportation systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions were tested: video in vehicle, audio in vehicle, and on-road flashing marker. The results from the driving simulator were inputs for a developed model that used traffic microsimulation (VISSIM 5.4) to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of changes in driver speed and compliance rate was greater at passive crossings than at active crossings. The slight difference in speed of drivers approaching ITS devices indicated that ITS helped drivers encounter crossings in a safer way. Since the traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varied depending on ITS safety devices, some modifications were made to the traffic simulation. The results showed that exposure to ITS devices at active crossings did not influence drivers’ behavior significantly according to the traffic performance indicator, such as delay time, number of stops, speed, and stopped delay. However, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
Heavy-vehicle driving involves a challenging work environment and a high crash rate. We investigated the associations of sleepiness, sleep disorders, and work environment (including truck characteristics) with the risk of crashing between 2008 and 2011 in the Australian states of New South Wales and Western Australia. We conducted a case-control study of 530 heavy-vehicle drivers who had recently crashed and 517 heavy-vehicle drivers who had not. Drivers' crash histories, truck details, driving schedules, payment rates, sleep patterns, and measures of health were collected. Subjects wore a nasal flow monitor for 1 night to assess for obstructive sleep apnea. Driving schedules that included the period between midnight and 5:59 am were associated with increased likelihood of crashing (odds ratio = 3.42, 95% confidence interval: 2.04, 5.74), as were having an empty load (odds ratio = 2.61, 95% confidence interval: 1.72, 3.97) and being a less experienced driver (odds ratio = 3.25, 95% confidence interval: 2.37, 4.46). Not taking regular breaks and the lack of vehicle safety devices were also associated with increased crash risk. Despite the high prevalence of obstructive sleep apnea, it was not associated with the risk of a heavy-vehicle nonfatal, nonsevere crash. Scheduling of driving to avoid midnight-to-dawn driving and the use of more frequent rest breaks are likely to reduce the risk of heavy-vehicle nonfatal, nonsevere crashes by 2–3 times.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Methods: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. Results: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/ 226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). Conclusions: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
Resumo:
This paper discusses major obstacles for the adoption of low cost level crossing warning devices (LCLCWDs) in Australia and reviews those trialed in Australia and internationally. The argument for the use of LCLCWDs is that for a given investment, more passive level crossings can be treated, therefore increasing safety benefits across the rail network. This approach, in theory, reduces risk across the network by utilizing a combination of low-cost and conventional level crossing interventions, similar to what is done in the road environment. This paper concludes that in order to determine if this approach can produce better safety outcomes than the current approach, involving the incremental upgrade of level crossings with conventional interventions, it is necessary to perform rigorous risk assessments and cost-benefit analyses of LCLCWDs. Further research is also needed to determine how best to differentiate less reliable LCCLWDs from conventional warning devices through the use of different warning signs and signals. This paper presents a strategy for progressing research and development of LCLCWDs and details how the Cooperative Research Centre (CRC) for Rail Innovation is fulfilling this strategy through the current and future affordable level crossing projects.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.
Resumo:
Aim To provide an overview of key governance matters relating to medical device trials and practical advice for nurses wishing to initiate or lead them. Background Medical device trials, which are formal research studies that examine the benefits and risks of therapeutic, non-drug treatment medical devices, have traditionally been the purview of physicians and scientists. The role of nurses in medical device trials historically has been as data collectors or co-ordinators rather than as principal investigators. Nurses more recently play an increasing role in initiating and leading medical device trials. Review Methods A review article of nurse-led trials of medical devices. Discussion Central to the quality and safety of all clinical trials is adherence to the International Conference on Harmonization Guidelines for Good Clinical Practice, which is the internationally-agreed standard for the ethically- and scientifically-sound design, conduct and monitoring of a medical device trial, as well as the analysis, reporting and verification of the data derived from that trial. Key considerations include the class of the medical device, type of medical device trial, regulatory status of the device, implementation of standard operating procedures, obligations of the trial sponsor, indemnity of relevant parties, scrutiny of the trial conduct, trial registration, and reporting and publication of the results. Conclusion Nurse-led trials of medical devices are demanding but rewarding research enterprises. As nursing practice and research increasingly embrace technical interventions, it is vital that nurse researchers contemplating such trials understand and implement the principles of Good Clinical Practice to protect both study participants and the research team.
Resumo:
Dedicated Short Range Communication (DSRC) is the emerging key technology supporting cooperative road safety systems within Intelligent Transportation Systems (ITS). The DSRC protocol stack includes a variety of standards such as IEEE 802.11p and SAE J2735. The effectiveness of the DSRC technology depends on not only the interoperable cooperation of these standards, but also on the interoperability of DSRC devices manufactured by various manufacturers. To address the second constraint, the SAE defines a message set dictionary under the J2735 standard for construction of device independent messages. This paper focuses on the deficiencies of the SAE J2735 standard being developed for deployment in Vehicular Ad-hoc Networks (VANET). In this regard, the paper discusses the way how a Basic Safety Message (BSM) as the fundamental message type defined in SAE J2735 is constructed, sent and received by safety communication platforms to provide a comprehensive device independent solution for Cooperative ITS (C-ITS). This provides some insight into the technical knowledge behind the construction and exchange of BSMs within VANET. A series of real-world DSRC data collection experiments was conducted. The results demonstrate that the reliability and throughput of DSRC highly depend on the applications utilizing the medium. Therefore, an active application-dependent medium control measure, using a novel message-dissemination frequency controller, is introduced. This application level message handler improves the reliability of both BSM transmissions/receptions and the Application layer error handling which is extremely vital to decentralized congestion control (DCC) mechanisms.