261 resultados para Rationalization of construction
Resumo:
The construction industry is dynamic in nature. The concept of project success has remained ambiguously defined in the construction industry. Project success means different things to different people. While some authors consider time, cost and quality as the predominant targets, others suggest that success is something more complex. The aim of this report is to develop a framework for measuring success of construction projects. A range of Key Performance Indicators (KPIs), measured both objectively and subjectively is developed. The identification of KPIs helps set a benchmark for measuring the performance of a construction project and provides significant insights into developing a general and comprehensive base for further research.
Resumo:
This report undertakes an exploratory analysis of Construction Innovation research projects in order to answer the question “What are the public policy implications of Construction Innovation research?”
Resumo:
The construction industry is one of major strategic importance. Its level of productivity has a significant effect on national economic growth. The analysis of published census/biannual surveys of construction by the Department of Statistics of Malaysia shows that Malaysia managed to achieve construction labour productivity growth between 1996 and 2005 despite increases in cost per employee. The decrease in unit labour costs is attributed to the value added improvement per worker through the increase in capital intensity. The marginal decline in capital productivity is due to the gestation period and the overcapacity of the industry. The civil engineering sub-sector recorded the highest labour productivity and is the most labour competitive in terms of unit labour cost and added value per labour cost. The residential sub-sectors recorded greatest change in the productivity indicators between 1996 and 2005.
Resumo:
This paper presents the results of a structural equation model (SEM) for describing and quantifying the fundamental factors that affect contract disputes between owners and contractors in the construction industry. Through this example, the potential impact of SEM analysis in construction engineering and management research is illustrated. The purpose of the specific model developed in this research is to explain how and why contract related construction problems occur. This study builds upon earlier work, which developed a disputes potential index, and the likelihood of construction disputes was modeled using logistic regression. In this earlier study, questionnaires were completed on 159 construction projects, which measured both qualitative and quantitative aspects of contract disputes, management ability, financial planning, risk allocation, and project scope definition for both owners and contractors. The SEM approach offers several advantages over the previously employed logistic regression methodology. The final set of structural equations provides insight into the interaction of the variables that was not apparent in the original logistic regression modeling methodology.
Resumo:
Life-cycle management (LCM) has been employed in the management of construction projects for many years in order to reduce whole life cost, time, risk and improve the service to owners. However, owing to lack of an effective information sharing platform, the current LCM of construction projects is not effectively used in the construction industry. Based upon the analysis of the information flow of LCM, a virutal prototyping (VP)-based communication and collaboration information platform is proposed. Following this, the platform is customized using DASSAULT sofware. The whole process of implementing the VP-based LCM are also discussed and, from a simple case study, it is demonstrated that the VP-based communication and collaboration information platform is an effective tool to support the LCM of construction projects.
Resumo:
In general, the performance of construction projects, including their sustainability performance, does not meet optimal expectations. One aspect of this is the performance of the participants who are independent and make a significance impact on overall project outcomes. Of these participants, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely, time, cost and quality. As the level of satisfaction is a subjective issue, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in an attempt to determine the performance of construction project outcomes - for instance, client satisfaction, customer satisfaction, contractor satisfaction, occupant satisfaction and home buyer satisfaction. These not only identify the performance of the construction project but are also used to improve and maintain relationships. In addition, these assessments are necessary for the continuous improvement and enhanced cooperation of participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparative standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may possibly be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This chapter examines the methods commonly practised in measuring satisfaction levels today and the advantages of promoting these methods. The results provide a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods to use in identifying the performance of project outcomes.
Resumo:
On obstacle-cluttered construction sites, understanding the motion characteristics of objects is important for anticipating collisions and preventing accidents. This study investigates algorithms for object identification applications that can be used by heavy equipment operators to effectively monitor congested local environment. The proposed framework contains algorithms for three-dimensional spatial modeling and image matching that are based on 3D images scanned by a high-frame rate range sensor. The preliminary results show that an occupancy grid spatial modeling algorithm can successfully build the most pertinent spatial information, and that an image matching algorithm is best able to identify which objects are in the scanned scene.
Resumo:
In high-risk industries, companies with well-conceived crisis management plans are at a commercial advantage. While there is some understanding of the risk management practices of construction companies, there is little insight into their crisis preparedness. This paper presents the findings of exploratory research that investigated this issue. Using a diagnostic model of crisis preparedness that has been developed and tested across a broad range of industries, it concludes that if the sample surveyed is typical, then corporate philosophies in construction companies do not support crisis management activities. Furthermore, crisis planning is rudimentary and undertaken in an insular, informal, fragmented fashion, supported by few resources and little strategic guidance. Consequently, many construction companies will have an inadequate understanding of their crisis exposure, of how to cope with crises when they happen, and of how to learn and recover from their aftermath.
Resumo:
This paper investigates the policies and instruments adopted in Hong Kong to control the carbon emissions of construction facilities, including the whole building life cycle: production of material stage, construction stage, operation stage and demolition stage. This commences with a literature review comparing activities world-wide to those in Hong Kong to identify the main issues at stake, followed by a report on a series of local interviews to evaluate the present situation in Hong Kong, as well as future opportunities for local carbon mitigation. The interviewees included practitioners from engineering contracting firms, consulting firms, clients and energy provider, together with two university experts and a counsellor. A small case study is also provided of a building project in Hong Kong to illustrate some of the innovative design aspects being incorporated into buildings in Hong Kong as a result of the current emphasis on sustainability. The paper concludes with a summary of main findings and proposals for improvement in policy related to carbon mitigation and building sustainability in Hong Kong.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes
Resumo:
Purpose – Rehearsing practical site operations is without doubt one of the most effective methods for minimising planning mistakes, because of the learning that takes place during the rehearsal activity. However, real rehearsal is not a practical solution for on-site construction activities, as it not only involves a considerable amount of cost but can also have adverse environmental implications. One approach to overcoming this is by the use of virtual rehearsals. The purpose of this paper is to investigate an approach to simulation of the motion of cranes in order to test the feasibility of associated construction sequencing and generate construction schedules for review and visualisation. Design/methodology/approach – The paper describes a system involving two technologies, virtual prototyping (VP) and four-dimensional (4D) simulation, to assist construction planners in testing the sequence of construction activities when mobile cranes are involved. The system consists of five modules, comprising input, database, equipment, process and output, and is capable of detecting potential collisions. A real-world trial is described in which the system was tested and validated. Findings – Feedback from the planners involved in the trial indicated that they found the system to be useful in its present form and that they would welcome its further development into a fully automated platform for validating construction sequencing decisions. Research limitations/implications – The tool has the potential to provide a cost-effective means of improving construction planning. However, it is limited at present to the specific case of crane movement under special consideration. Originality/value – This paper presents a large-scale, real life case of applying VP technology in planning construction processes and activities.
Resumo:
The construction industry is an industry of major strategic importance. Its level of productivity has a significant effect on national economic growth. Productivity indicators are examined. The indicators consist of labour productivity, capital productivity, labour competitiveness, capital intensity and added value content of data, which are obtained from the published census/biannual surveys of the construction industry between the years 1999 and 2011 from the Department of Statistics of Malaysia. The results indicated that there is an improvement in the labour productivity, but the value-added content is declining. The civil engineering and special trades subsectors are more productive than the residential and non-residential subsectors in terms of labour productivity because machine-for-labour substitution is a more important process in those subsectors. The capital-intensive characteristics of civil engineering and special trade works enable these subsectors to achieve higher added value per labour cost but not the capital productivity. The added value per labour cost is lower in larger organizations despite higher capital productivity. However, the capital intensity is lower and unit labour cost is higher in the larger organizations.