131 resultados para Quasi-Continuity
Resumo:
Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
Changes in fluidization behaviour behaviour was characterised for parallelepiped particles with three aspect ratios, 1:1, 2:1 and 3:1 and spherical particles. All drying experiments were conducted at 500C and 15 % RH using a heat pump dehumidifier system. Fluidization experiments were undertaken for the bed heights of 100, 80, 60 and 40 mm and at 10 moisture content levels. Due to irregularities in shape minimum fluidisation velocity of parallelepiped particulates (potato) could not fitted to any empirical model. Also a generalized equation was used to predict minimum fluidization velocity. The modified quasi-stationary method (MQSM) has been proposed to describe drying kinetics of parallelepiped particulates at 30o C, 40o C and 50o C that dry mostly in the falling rate period in a batch type fluid bed dryer.
Resumo:
Natural disasters and deliberate, willful damage to telecommunication infrastructure can result in a loss of critical voice and data services. This loss of service hinders the ability for efficient emergency response and can cause delays leading to loss of life. Current mobile devices are generally tied to one network operator. When a disaster is of significant impact, that network operator cannot be relied upon to provide service and coverage levels that would normally exist. While some operators have agreements with other operators to share resources (such as network roaming) these agreements are contractual in nature and cannot be activated quickly in an emergency. This paper introduces Fourth Generation (4G) wireless networks. 4G networks are highly mobile and heterogeneous, which makes 4G networks highly resilient in times of disaster.
Resumo:
Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
With the increasing complexity of modern day threats and the growing sophistication of interlinked and interdependent operating environments, Business Continuity Management (BCM) has emerged as a new discipline, offering a strategic approach to safeguarding organisational functions. Of significant interest is the application of BCM frameworks and strategies within critical infrastructure, and in particular the aviation industry. Given the increased focus on security and safety for critical infrastructures, research into the adoption of BCM principles within an airport environment provides valuable management outcomes and research into a previously neglected area of inquisition. This research has used a single case study methodology to identify possible impediments to BCM adoption and implementation by the Brisbane Airport Corporation (BAC). It has identified a number of misalignments between the required breadth of focus for a BCM program, identified differing views on specific roles and responsibilities required during a major disruptive event and illustrated the complexities of the Brisbane Airport which impede the understanding and implementation of effective Business Continuity Management Strategies.
Resumo:
Operators of busy contemporary airports have to balance tensions between the timely flow of passengers, flight operations, the conduct of commercial business activities and the effective application of security processes. In addition to specific onsite issues airport operators liaise with a range of organisations which set and enforce aviation-related policies and regulations as well as border security agencies responsible for customs, quarantine and immigration, in addition to first response security services. The challenging demands of coordinating and planning in such complex socio-technical contexts place considerable pressure on airport management to facilitate coordination of what are often conflicting goals and expectations among groups that have standing in respect to safe and secure air travel. What are, as yet, significantly unexplored issues in large airports are options for the optimal coordination of efforts from the range of public and private sector participants active in airport security and crisis management. A further aspect of this issue is how airport management systems operate when there is a transition from business-as-usual into an emergency/crisis situation and then, on recovery, back to ‘normal’ functioning. Business Continuity Planning (BCP), incorporating sub-plans for emergency response, continuation of output and recovery of degraded operating capacity, would fit such a context. The implementation of BCP practices in such a significant high security setting offers considerable potential benefit yet entails considerable challenges. This paper presents early results of a 4 year nationally funded industry-based research project examining the merger of Business Continuity Planning and Transport Security Planning as a means of generating capability for improved security and reliability and, ultimately, enhanced resilience in major airports. The project is part of a larger research program on the Design of Secure Airports that includes most of the gazetted ‘first response’ international airports in Australia, key Aviation industry groups and all aviation-related border and security regulators as collaborative partners. The paper examines a number of initial themes in the research, including: ? Approaches to integrating Business Continuity & Aviation Security Planning within airport operations; ? Assessment of gaps in management protocols and operational capacities for identifying and responding to crises within and across critical aviation infrastructure; ? Identification of convergent and divergent approaches to crisis management used across Austral-Asia and their alignment to planned and possible infrastructure evolution.
Resumo:
Techniques for the accurate measurement of ionising radiation have been evolving since Roentgen first discovered x-rays in 1895; until now experimental measurements of radiation fields in the three spatial dimensions plus time have not been successfully demonstrated. In this work, we embed an organic plastic scintillator in a polymer gel dosimeter to obtain the first quasi-4D experimental measurement of a radiation field.
Resumo:
As a resilience enhancing practice, business continuity management (BCM) can play an important role in aiding preparation of the insurance industry for coping with the losses incurred by major discontinuity incidents: regardless of cause. Acknowledging the increasing frequency of unpredictable man-made disasters and natural catastrophes, the insurance industry would benefit from examining and implementing, where suitable, key elements of BCM. Such strategic decisions would assist insurers and re-insurers collectively to enhance mutual capability to respond to, and recover from, the impact of significant losses. This paper presents a comparison of opinions about BCM practitioners in both retail and re-insurance companies on the importance of generic continuity practices with actual levels of BCM practice across the two industry groups in Southeast Asia. It suggests means by which multi-lateral cooperation across Asian economies and between retail and re-insurance market segments might enhance the viability of the insurance industry in the face of increased stress from major natural and socio-technical hazards.
Resumo:
Community-based activism against proposed construction projects is growing. Many protests are poorly managed and escalate into long-term and sometimes acrimonious disputes which damage communities, firms and the construction industry as a whole. Using a thematic storytelling approach which draws on ethnographic method, within a single case study framework, new insights into the social forces that shape and sustain community-based protest against construction projects are provided. A conceptual model of protest movement continuity is presented which highlights the factors that sustain protest continuity over time. The model illustrates how social contagion leads to common community perceptions of development risk and opportunity, to a positive internalization of collective values and identity, to a strategic utilization of social capital and an awareness of the need to manage the emotional dynamics of protest through mechanisms such as symbolic artefacts.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
Using a thematic story telling approach which draws on ethnographic method, a grounded theory of protest movement continuity is presented. The grounded theory draws from theories and activist stories relating to the facilitative role of movement networks, social contagion theory and the cultural experience of activism. It highlights the contagious influence of protest networks in maintaining protest continuity over time and how this leads to common perceptions of development risk and opportunity within communities. It also reveals how communities use collective values and identity, social capital, emotional dynamics and symbolic artifacts to maintain protest continuity.