220 resultados para Porous Medium
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
An improved mesoscopic model is presented for simulating the drying of porous media. The aim of this model is to account for two scales simultaneously: the scale of the whole product and the scale of the heterogeneities of the porous medium. The innovation of this method is the utilization of a new mass-conservative scheme based on the Control-Volume Finite-Element (CV-FE) method that partitions the moisture content field over the individual sub-control volumes surrounding each node within the mesh. Although the new formulation has potential for application across a wide range of transport processes in heterogeneous porous media, the focus here is on applying the model to the drying of small sections of softwood consisting of several growth rings. The results conclude that, when compared to a previously published scheme, only the new mass-conservative formulation correctly captures the true moisture content evolution in the earlywood and latewood components of the growth rings during drying.
Resumo:
A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.
Resumo:
The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the theoretical model proposed by Nield and Kuznetsov. Data pertinent to plate-fin heat exchangers, as bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then used to give the overall permeability which is linked to the porosity and permeability of each phase as well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical values are obtained for the momentum transfer coefficient for three different fin spacing values considered in the heat exchanger experiments.
Resumo:
A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum.
Resumo:
We present a porous medium model of the growth and deterioration of the viable sublayers of an epidermal skin substitute. It consists of five species: cells, intracellular and extracellular calcium, tight junctions, and a hypothesised signal chemical emanating from the stratum corneum. The model is solved numerically in Matlab using a finite difference scheme. Steady state calcium distributions are predicted that agree well with the experimental data. Our model also demonstrates epidermal skin substitute deterioration if the calcium diffusion coefficient is reduced compared to reported values in the literature.
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
Groundwater flow models are usually characterized as being either transient flow models or steady state flow models. Given that steady state groundwater flow conditions arise as a long time asymptotic limit of a particular transient response, it is natural for us to seek a finite estimate of the amount of time required for a particular transient flow problem to effectively reach steady state. Here, we introduce the concept of mean action time (MAT) to address a fundamental question: How long does it take for a groundwater recharge process or discharge processes to effectively reach steady state? This concept relies on identifying a cumulative distribution function, $F(t;x)$, which varies from $F(0;x)=0$ to $F(t;x) \to \infty$ as $t\to \infty$, thereby providing us with a measurement of the progress of the system towards steady state. The MAT corresponds to the mean of the associated probability density function $f(t;x) = \dfrac{dF}{dt}$, and we demonstrate that this framework provides useful analytical insight by explicitly showing how the MAT depends on the parameters in the model and the geometry of the problem. Additional theoretical results relating to the variance of $f(t;x)$, known as the variance of action time (VAT), are also presented. To test our theoretical predictions we include measurements from a laboratory–scale experiment describing flow through a homogeneous porous medium. The laboratory data confirms that the theoretical MAT predictions are in good agreement with measurements from the physical model.