453 resultados para Plant virus transmission
Resumo:
This study aims to examine the impact of socio-ecologic factors on the transmission of Ross River virus (RRV) infection and to identify areas prone to social and ecologic-driven epidemics in Queensland, Australia. We used a Bayesian spatiotemporal conditional autoregressive model to quantify the relationship between monthly variation of RRV incidence and socio-ecologic factors and to determine spatiotemporal patterns. Our results show that the average increase in monthly RRV incidence was 2.4% (95% credible interval (CrI): 0.1–4.5%) and 2.0% (95% CrI: 1.6–2.3%) for a 1°C increase in monthly average maximum temperature and a 10 mm increase in monthly average rainfall, respectively. A significant spatiotemporal variation and interactive effect between temperature and rainfall on RRV incidence were found. No association between Socio-economic Index for Areas (SEIFA) and RRV was observed. The transmission of RRV in Queensland, Australia appeared to be primarily driven by ecologic variables rather than social factors.
Resumo:
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.
Resumo:
Barley yellow dwarf luteovirus-GPV (BYDV-GPV) is a common problem in Chinese wheat crops but is unrecorded elsewhere. A defining characteristic of GPV is its capacity to be transmitted efficiently by both Schizaphis graminum and Rhopaloshiphum padi. This dual aphid species transmission contrasts with those of BYDV-RPV and BYDV-SGV, globally distributed viruses, which are efficiently transmitted only by Rhopaloshiphum padi and Schizaphis graminum respectively. The viral RNA sequences encoding the coat protein (22K) gene, the movement protein (17K) gene, the region surrounding the conserved GDD motif of the polymerase gene and the intergenic sequences between these genes were determined for GPV and an Australian isolate of BYDV-RPV (RPVa). In all three genes, the sequences of GPV and RPVa were more similar to those of an American isolate of BYDV-RPV (RPVu) than to any other luteovirus for which there is data available. RPVa and RPVu were very similar, especially their coat proteins which had 97% identity at the amino acid level. The coat protein of GPV had 76% and 78% amino acid identity with RPVa and RPVu respectively. The data suggest that RPVu and RPVa are correctly named as strains of the same serotype and that GPV is sufficiently different from either RPV strain to be considered a distinct BYDV type. The coat protein and movement protein genes of GPV are very dissimilar to SGV. The polymerase sequences of RPVu, RPVa and GPV show close affinities with those of the sobemo-like luteoviruses and little similarity with those of the carmo-like luteoviruses. The sequences of the coat proteins, movement proteins and the polymerase segments of BYDV serotypes, other than RPV and GPV, form a cluster that is separate from their counterpart sequences from dicot-infecting luteoviruses. The RPV and GPV isolates consistently fall within a dicot-infecting cluster. This suggests that RPV and GPV evolved from within this group of viruses. Since these other viruses all infect dicots it seems likely that their common ancestor infected a dicot and that RPV and GPV evolved from a virus that switched hosts from a dicot to a monocot.
Resumo:
Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.
Resumo:
A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 μg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.
Resumo:
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined except for the 5′-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3′ 6.7K ORF are likely to be expressed via subgenomic mRNAs. © 1988 IRL Press Limited.
Resumo:
The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.
Resumo:
Plants fight viral infections with enzymes that digest viral RNA, but viruses retaliate with proteins that suppress these enzymes. To boost their antiviral response plants deploy enzymes with redundant functions.
Resumo:
Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.
Resumo:
Efficient transformation of barley cv. Schooner was achieved using Agrobacterium delivery, hygromycin or bialaphos selection and embryogenic callus. Using this system, transgenic plants were generated that contained either the green fluorescent protein gene, or transgenes derived from barley yellow dwarf (BYDV) and cereal yellow dwarf (CYDV) viruses. Many of these plants contained 1-3 transgene copies that were inherited in a simple Mendelian manner. Some plants containing BYDV and/or CYDV derived transgenes showed reduced virus symptoms and rates of viral replication when challenged with the appropriate virus. The ability to transform Schooner is a significant advance for the Australian barley industry, as this elite malting variety is, and has for the last 15 years been, the most widely grown barley variety in eastern Australia.
Resumo:
Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.
Resumo:
A full-length cDNA clone of barley yellow dwarf virus (BYDV-PAV serotype) has been constructed and fused to the bacteriophage T7 RNA polymerase promoter. RNA transcripts produced in vitro, either capped or uncapped, were infectious in Triticum monococcum protoplasts. Protoplasts inoculated with in vitro-transcribed BYDV RNA accumulated coat protein, synthesized new viral RNAs, and produced virus particles. Aphid feeding on extracts from protoplasts inoculated with in vitro RNA transcripts can be used to transfer the virus progeny to whole plants. Introduction of mutations which interrupt specific BYDV-PAV open reading frames (ORFs) V and VI eliminated infectivity while an ORF I mutant remained infectious. Infectious RNA transcripts derived from BYDV cDNA clones will facilitate analysis of the molecular aspects of BYDV infection and further enhance our understanding of this economically important virus.
Resumo:
An RNA molecule with properties of a satellite RNA was found in an isolate of barley yellow dwarf virus (BYDV), RPV serotype. It is 322 nucleotides long, single-stranded, and does not hybridize to the viral genome. Dimers of the RNA, which presumably represent replicative intermediates, were able to self-cleave into monomers. In vitro transcripts from cDNA clones were capable of self-cleavage in both the plus (encapsidated) and minus orientations. The sequence flanking the minus strand cleavage site contained a consensus " hammerhead" structure, similar to those found in other self-cleaving satellite RNAs. Although related to the hammerhead structure, sequences flanking the plus strand termini showed differences from the consensus and may be folded into a different structure containing a pseudoknot. © 1991.