206 resultados para Performance of the stock funds
Resumo:
The growth of the Penaeus monodon prawn aquaculture industry in Australia is hampered by a reliance on wild-caught broodstock. This species has proven difficult to breed from if broodstock are reared in captivity. Studies were therefore carried out to investigate factors controlling reproduction and influencing egg quality. Results of the studies revealed that patterns of nutrient accumulation during early ovary development are altered by captive conditions, possibly contributing to reduce larval quality. The sinus gland hormones were shown, together with the environment, to regulate two stages of ovary development. In a separate study it was further revealed that the hormone methyl farnesoate (MF) could negatively regulate the final stages of ovary development. Lastly it was shown that broodstock reared in captivity are less likely to mate and that this is due to inherent problems in both the male and the female prawns.
Resumo:
Using the generative processes developed over two stages of creative development and the performance of The Physics Project at the Loft at the Creative Industries Precinct at the Queensland University of Technology (QUT) from 5th – 8th April 2006 as a case study, this exegesis considers how the principles of contemporary physics can be reframed as aesthetic principles in the creation of contemporary performance. The Physics Project is an original performance work that melds live performance, video and web-casting and overlaps an exploration of personal identity with the physics of space, time, light and complementarity. It considers the acts of translation between the language of physics and the language of contemporary performance that occur via process and form. This exegesis also examines the devices in contemporary performance making and contemporary performance that extend the reach of the performance, including the integration of the live and the mediated and the use of metanarratives.
Resumo:
Creating sustainable urban environments is one of the challenging issues that need a clear vision and implementation strategies involving changes in governmental values and decision making process for local governments. Particularly, internalisation of environmental externalities of daily urban activities (e.g. manufacturing, transportation and so on) has immense importance for which local policies are formulated to provide better living conditions for the people inhabiting urban areas. Even if environmental problems are defined succinctly by various stakeholders, complicated nature of sustainability issues demand a structured evaluation strategy and well-defined sustainability parameters for efficient and effective policy making. Following this reasoning, this study involves assessment of sustainability performance of urban settings mainly focusing on environmental problems caused by rapid urban expansion and transformation. By taking into account land-use and transportation interaction, it tries to reveal how future urban developments would alter daily urban travel behaviour of people and affect the urban and natural environments. The paper introduces a grid-based indexing method developed for this research and trailed as a GIS-based decision support tool to analyse and model selected spatial and aspatial indicators of sustainability in the Gold Coast. This process reveals parameters of site specific relationship among selected indicators that are used to evaluate index-based performance characteristics of the area. The evaluation is made through an embedded decision support module by assigning relative weights to indicators. Resolution of selected grid-based unit of analysis provides insights about service level of projected urban development proposals at a disaggregate level, such as accessibility to transportation and urban services, and pollution. The paper concludes by discussing the findings including the capacity of the decision support system to assist decision-makers in determining problematic areas and developing intervention policies for sustainable outcomes of future developments.
Resumo:
William Gibson’s The Miracle Worker was staged at the Brisbane Powerhouse June 2009 by Crossbow Productions. In this adaption, people with hearing impairment were privileged through the use of shadow-signing, unscripted signing and the appropriation of signing as a theatrical language in itself. 250 people living with hearing impairment attended the production, 70 had never attended a theatrical event before. During the post-performance discussions hearing audience members expressed feelings of displacement through experiencing the culture of the deaf society and not grasping some of the ideas. This paper argues that this inversion enhanced meaning making for all and illustrates a way forward to encourage the signing of more theatrical events.
Resumo:
During 1999 the Department of Industry, Science and Resources (ISR) published 4 research reports it had commissioned from the Australian Expert Group in Industry Studies (AEGIS), a research centre of the University of Western Sydney, Macarthur. ISR will shortly publish the fifth and final report in this series. The five reports were commissioned by the Department, as part of the Building and Construction Action Agenda process, to investigate the dynamics and performance of the sector, particularly in relation its innovative capacity. Professor Jane Marceau, PVCR at the University of Western Sydney and Director of AEGIS, led the research team. Dr Karen Manley was the researcher and joint author on three of the five reports. This paper outlines the approach and key findings of each of the five reports. The reports examined 5 key elements of the ‘building and construction product system’. The term ‘product system’ reflects the very broad range of industries and players we consider to contribute to the performance of the building and construction industries. The term ‘product system’ also highlights our focus on the systemic qualities of the building and construction industries. We were most interested in the inter-relationships between key segments and players and how these impacted on the innovation potential of the product system. The ‘building and construction product system’ is hereafter referred to as ‘the industry’ for ease of presentation. All the reports are based, at least in part, on an interviewing or survey research phase which involved gathering data from public and private sector players nationally. The first report ‘maps’ the industry to identify and describe its key elements and the inter-relationships between them. The second report focuses specifically on the linkages between public-sector research organisations and firms in the industry. The third report examines the conditions surrounding the emergence of new businesses in the industry. The fourth report examines how manufacturing businesses are responding to customer demands for ‘total solutions’ to their building and construction needs, by providing various services to clients. The fifth report investigates the capacity of the industry to encourage and undertake energy efficient building design and construction.
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Resumo:
This paper will investigate the suitability of existing performance measures under the assumption of a clearly defined benchmark. A range of measures are examined including the Sortino Ratio, the Sharpe Selection ratio (SSR), the Student’s t-test and a decay rate measure. A simulation study is used to assess the power and bias of these measures based on variations in sample size and mean performance of two simulated funds. The Sortino Ratio is found to be the superior performance measure exhibiting more power and less bias than the SSR when the distribution of excess returns are skewed.
Resumo:
In Australia, between 1994 and 2000, 50 construction workers were killed each year as a result of their work, the industry fatality rate, at 10.4 per 100,000 persons, is similar to the national road toll fatality rate and the rate of serious injury is 50% higher than the all industries average. This poor performance represents a significant threat to the industry’s social sustainability. Despite the best efforts of regulators and policy makers at both State and Federal levels, the incidence of death, injury and illness in the Australian construction industry has remained intransigently high, prompting an industry-led initiative to improve the occupational health and safety (OHS) performance of the Australian construction industry. The ‘Safer Construction’ project involves the development of an evidence-based Voluntary Code of Practice for OHS in the industry.
Resumo:
Light gauge steel frame (LSF) structures are increasingly used in commercial and residential buildings because of their non-combustibility, dimensional stability and ease of installation. A common application is in floor-ceiling systems. The LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was conducted to investigate its structural and fire resistance behaviour under standard fire conditions. This paper presents the results of full scale experimental investigations into the structural and fire behaviour of the new LSF floor system protected by the composite ceiling unit. Both the conventional and the new floor systems were tested under structural and fire loads. It demonstrates the improvements provided by the new composite panel system in comparison to conventional floor systems. Numerical studies were also undertaken using the finite element program ABAQUS. Measured temperature profiles of floors were used in the numerical analyses and their results were compared with fire test results. Tests and numerical studies provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system.
Resumo:
Field studies show that the internal screens in a gross pollutant trap (GPT) are often clogged with organic matter, due to infrequent cleaning. The hydrodynamic performance of a GPT with fully blocked screens was comprehensively investigated under a typical range of onsite operating conditions. Using an acoustic Doppler velocimeter (ADV), velocity profiles across three critical sections of the GPT were measured and integrated to examine the net fluid flow at each section. The data revealed that when the screens are fully blocked, the flow structure within the GPT radically changes. Consequently, the capture/retention performance of the device rapidly deteriorates. Good agreement was achieved between the experimental and the previous 2D computational fluid dynamics (CFD) velocity profiles for the lower GPT inlet flow conditions.
Resumo:
The trend of diminished funding, demands for greater efficiency and higher public accountability have led to a rapid expansion of interest in the bibliometric assessment of research performance of universities. A pilot research is conducted to provide a preliminary overview of the research performance of the building and construction schools or departments through the analysis of bibliometric indicators including the journal impact factor (JIF) published by Institute for Scientific Information (ISI). The suitability of bibliometric evaluation approaches as a measure of research quality in building and construction management research field is discussed.
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.