212 resultados para Loyalty programs
Resumo:
Purpose A fundamental aspect of hierarchical loyalty programs is that some consumers get rewards that others do not. Despite the widespread use of such programs, academics have long debated whether these benefits are outweighed by the potential negative impact of the differential treatment of customers. This study extends our understanding, examining the impact of message framing on consumers’ reactions to hierarchical loyalty structures. Design/methodology/approach Three online studies were conducted. Study 1 uses advertisements to manipulate the message frame’s emphasis (benefits vs. status). Study 2 manipulates consumers’ frame of thought by directing their attention to either changes in benefits or status. Finally, Study 3 uses the proposed framework to reconcile contradictory findings from past research. Findings Low-frequency customers who do not expect to qualify for a superior customer tier tend to reject hierarchical programs when thinking about status. In contrast, when these customers think about concrete rewards, loyalty program messages produce no negative reactions. High-frequency customers are positively affected by communication regardless of the type of benefits framed. Research limitations/implications All studies were done online potentially limiting the external validity of the results. Nevertheless, the impact of message framing on perceptions about the loyalty program seems to be quite robust across different studies and manipulations. Practical implications When communicating with low-frequency customers managers should avoid promising status; customers should instead be motivated based on concrete rewards. High-frequency customers are indifferent to alternative emphasis of communication frames. Originality/value Marketing academics have acknowledged the importance of being able to reward top customers without demotivating light and moderate users. Our research is the first to provide a solution to this issue.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This research examines the effects of expectation (perceived attractiveness) on satisfaction, place identity, and place dependence. Place identity and place dependence are viewed as relational components of choice and relate to deeper needs. This study proposes that these two relational components depend on transactional expectations, which are emergent and determined by past experiences and visitor goals. In a theoretically elaborated and tested Structural Equation Model (SEM) this study assumes that these relationships vary according to intentions to return. The study addresses the conditions under which loyalty intentions influence the deeper place attachments (place identity and place dependence) that visitors associate with attractive cultural and natural destinations. The model is tested on a sample of 504 international tourists visiting Tanzania during fall 2010, and explains 59% of variance in the predicted dependent variables. The results are linked to a discussion on loyalty programs.
Resumo:
This paper recognises that customer loyalty is important for many competitive organisations, and that retail firms make investments to build and maintain loyal relationships with their existing and potential customers (e.g. loyalty programs). However, there has been little focus on the mechanisms by which these relationship investments operate to achieve customer loyalty. This paper examines one mechanism, namely customer gratitude, which works to make a firm’s relationship marketing investment a success or a failure. Using data from 1600 undergraduate students, this study empirically confirms the mediating role of customer gratitude between the customers’ perceptions a firm’s relationship marketing investments and customers’ perceptions of the value of the relationship with the firm. Further, a significant moderating effect of perceived benevolence on the relationship between customers’ perceptions a firm’s relationship marketing investments and customer gratitude was identified. For theorists, this customer gratitude model offers a better psychological explanation of how relationship marketing investments operate to improve the value that customers place on their relationships with retailers. Our research suggests that managers should invest resources to stimulate customer gratitude in order to build strong customer–seller relationships.
Resumo:
Purpose Following the perspective of frustration theory customer frustration incidents lead to frustration behavior such as protest (negative word‐of‐mouth). On the internet customers can express their emotions verbally and non‐verbally in numerous web‐based review platforms. The purpose of this study is to investigate online dysfunctional customer behavior, in particular negative “word‐of‐web” (WOW) in online feedback forums, among customers who participate in frequent‐flier programs in the airline industry. Design/methodology/approach The study employs a variation of the critical incident technique (CIT) referred to as the critical internet feedback technique (CIFT). Qualitative data of customer reviews of 13 different frequent‐flier programs posted on the internet were collected and analyzed with regard to frustration incidents, verbal and non‐verbal emotional effects and types of dysfunctional word‐of‐web customer behavior. The sample includes 141 negative customer reviews based on non‐recommendations and low program ratings. Findings Problems with loyalty programs evoke negative emotions that are expressed in a spectrum of verbal and non‐verbal negative electronic word‐of‐mouth. Online dysfunctional behavior can vary widely from low ratings and non‐recommendations to voicing switching intentions to even stronger forms such as manipulation of others and revenge intentions. Research limitations/implications Results have to be viewed carefully due to methodological challenges with regard to the measurement of emotions, in particular the accuracy of self‐report techniques and the quality of online data. Generalization of the results is limited because the study utilizes data from only one industry. Further research is needed with regard to the exact differentiation of frustration from related constructs. In addition, large‐scale quantitative studies are necessary to specify and test the relationships between frustration incidents and subsequent dysfunctional customer behavior expressed in negative word‐of‐web. Practical implications The study yields important implications for the monitoring of the perceived quality of loyalty programs. Management can obtain valuable information about program‐related and/or relationship‐related frustration incidents that lead to online dysfunctional customer behavior. A proactive response strategy should be developed to deal with severe cases, such as sabotage plans. Originality/value This study contributes to knowledge regarding the limited research of online dysfunctional customer behavior as well as frustration incidents of loyalty programs. Also, the article presents a theoretical “customer frustration‐defection” framework that describes different levels of online dysfunctional behavior in relation to the level of frustration sensation that customers have experienced. The framework extends the existing perspective of the “customer satisfaction‐loyalty” framework developed by Heskett et al.
Resumo:
The days when Coles and Woolworths only sold groceries are long gone. Both are now established players in a broad range of consumer markets, with interests in liquor and hotels, fuel and convenience, general merchandise and mobile phones. With a network of over 1,600 supermarkets, 1,100 service stations, 2,200 liquor stores and nearly 400 hotels, the supermarket duo are now getting ready for a war with Australia’s big four banks.