288 resultados para Light curing unit
Resumo:
Well-designed indoor environments can support people’s health and welfare. In this literature review, we identify the environmental features that affect human health and wellbeing. Environmental characteristics found to influence health outcomes and/or wellbeing included: environmental safety; indoor air quality (e.g. odour and temperature); sound and noise; premises and interior design (e.g. construction materials, viewing nature and experiencing nature, windows versus no windows, light, colours, unit layout and placement of the furniture, the type of room, possibilities to control environmental elements, environmental complexity and sensory simulations, cleanliness, ergonomics and accessibility, ‛‛wayfinding’’); art, and music, among others. Indoor environments that incorporate healing elements can, for instance, reduce anxiety, lower blood pressure, lessen pain and shorten hospital stays.
Resumo:
4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.
Resumo:
Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.
Resumo:
Light gauge steel frame (LSF) structures are increasingly used in commercial and residential buildings because of their non-combustibility, dimensional stability and ease of installation. A common application is in floor-ceiling systems. The LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was conducted to investigate its structural and fire resistance behaviour under standard fire conditions. This paper presents the results of full scale experimental investigations into the structural and fire behaviour of the new LSF floor system protected by the composite ceiling unit. Both the conventional and the new floor systems were tested under structural and fire loads. It demonstrates the improvements provided by the new composite panel system in comparison to conventional floor systems. Numerical studies were also undertaken using the finite element program ABAQUS. Measured temperature profiles of floors were used in the numerical analyses and their results were compared with fire test results. Tests and numerical studies provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system.
Resumo:
This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.
Resumo:
Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
The use of hindered amine light stabilizers (HALS) to retard thermo- and photo-degradation of polymers has become increasingly common. Proposed mechanisms of polymer stabilisation involve significant changes to the HALS chemical structure; however, reports of the characterisation of these modified chemical species are limited. To better understand the fate of HALS and determine their in situ modifications, desorption electrospray ionisation mass spectrometry (DESI-MS) was employed to characterise ten commercially available HALS present in polyester-based coil coatings. TINUVIN® 770, 292, 144, 123, 152, and NOR371; HOSTAVIN® 3052, 3055, 3050, and 3058 were separately formulated with a pigmented, thermosetting polyester resin, cured on metal at 262 C and analysed directly by DESI-MS. High-level ab initio molecular orbital theory calculations were also undertaken to aid the mechanistic interpretation of the results. For HALS containing N-substituted piperidines (i.e., N-CH3, N-C(O)CH3, and N-OR) a secondary piperidine (N-H) analogue was detected in all cases. The formation of these intermediates can be explained either through hydrogen abstraction based mechanisms or direct N-OR homolysis with the former dominant under normal service temperatures (ca. 25-80 C), and the latter potentially becoming competitive under the high temperatures associated with curing (ca. 230-260 C). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.
Resumo:
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.
Resumo:
There has been an increasing focus on the development of test methods to evaluate the durability performance of concrete. This paper contributes to this focus by presenting a study that evaluates the effect of water accessible porosity and oven-dry unit weight on the resistance of both normal and light-weight concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical models are established to correlate the total charge passed and the chloride migration coefficient with the basic properties of concrete such as water accessible porosity, oven dry unit weight, and compressive strength. These equations can be broadly applied to both normal and lightweight aggregate concretes. The model was also validated by an independent set of experimental results from two different concrete mixtures. The model provides a very good estimate on the concrete’s durability performance in respect to the resistance to chloride ion penetration.