115 resultados para Instruction set
Resumo:
With the increasing importance of Application Domain Specific Processor (ADSP) design, a significant challenge is to identify special-purpose operations for implementation as a customized instruction. While many methodologies have been proposed for this purpose, they all work for a single algorithm chosen from the target application domain. Such algorithm-specific approaches are not suitable for designing instruction sets applicable to a whole family of related algorithms. For an entire range of related algorithms, this paper develops a methodology for identifying compound operations, as a basis for designing “domain-specific” Instruction Set Architectures (ISAs) that can efficiently run most of the algorithms in a given domain. Our methodology combines three different static analysis techniques to identify instruction sequences common to several related algorithms: identification of (non-branching) instruction sequences that occur commonly across the algorithms; identification of instruction sequences nested within iterative constructs that are thus executed frequently; and identification of commonly-occurring instruction sequences that span basic blocks. Choosing different combinations of these results enables us to design domain-specific special operations with different desired characteristics, such as performance or suitability as a library function. To demonstrate our approach, case studies are carried out for a family of thirteen string matching algorithms. Finally, the validity of our static analysis results is confirmed through independent dynamic analysis experiments and performance improvement measurements.
Resumo:
Touch keyboarding as a vocational skill is disappearing at a time when students and educators across alleducational sectors are expected to use a computer keyboard on a regular basis. there is documentation surrounding the embedding of Information and Communication Technology (ICT) within the curricula and yet within the National Training Packages touch keyboarding, previously considered a core component, is now an elective in the Business Services framework. This situation is an odds with current practice overseas where touch keyboarding is a component of primary and secondary curricula. From Rhetoric to Practice explores the current issues and practice in teaching and learning touch keyboarding in primary, secondary and tertiary institutions. Through structured interview participants detailed current practice of teachers and their students. Further, tertiary students participated in a training program aimed at achquiring touch keyboarding as a skill to enhance their studies. The researcher's background experience of fifteen years teaching touch keyboarding and computer literacty to adults and 30 years in Business Services trade provides a strong basis for this project. The teaching experience is enhanced by industry experience in administration, course coordination in technical, community and tertiary institutions and a strong commitment to the efficient usage of a computer by all. The findings of this project identified coursework expectations requiring all students from kindergarten to tertiary to use a computer keyboard on a weekly basis and that neither teaching nor learning tough keyboarding appears in the primary, secondary and tertiary curricula in New South Wales. Further, teachers recognised tough keyboarding as the prefered style over 'hunt and peck' keyboarding while acknowledging the teaching and learning difficulties of time constraints, the need for qualified touch keyboarding teachers and issues arising when retraining students from existing poor habits. In conclusion, this project recommends that computer keyboarding be defined as a writing tool for education, vocation and life, with early instruction set in primary schooling area and embedding touch keyboarding with the secondary, technical and tertiary areas and finally to draw the attention of educational authorities to the Duty Of Care aspects associated with computer keyboarding in the classroom.
Resumo:
An Application Specific Instruction-set Processor (ASIP) is a specialized processor tailored to run a particular application/s efficiently. However, when there are multiple candidate applications in the application’s domain it is difficult and time consuming to find optimum set of applications to be implemented. Existing ASIP design approaches perform this selection manually based on a designer’s knowledge. We help in cutting down the number of candidate applications by devising a classification method to cluster similar applications based on the special-purpose operations they share. This provides a significant reduction in the comparison overhead while resulting in customized ASIP instruction sets which can benefit a whole family of related applications. Our method gives users the ability to quantify the degree of similarity between the sets of shared operations to control the size of clusters. A case study involving twelve algorithms confirms that our approach can successfully cluster similar algorithms together based on the similarity of their component operations.
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
Despite an ostensibly technology-driven society, the ability to communicate orally is still seen as an essential ability for students at school and university, as it is for graduates in the workplace. The need to develop effective oral communication skills is often tied to future work-related tasks. One tangible way that educators have assessed proficiency in this area is through prepared oral presentations. While some use the terms oral communication and oral presentation interchangeably, other writers question the role more formal presentations play in the overall development of oral communication skills. Adding to the discussion, this paper is part of a larger study examining the knowledge and skills students bring into the academy from previous educational experiences. The study examines some of the teaching and assessment methods used in secondary schools to develop oral communication skills through the use of formal oral presentations. Specifically, it will look at assessment models and how these are used as a form of instruction as well as how they contribute to an accurate evaluation of student abilities. The purpose of this paper is to explore key terms and identify tensions between expectations and practice. Placing the emphasis on the ‘oral’ aspect of this form of communication this paper will particularly look at the ‘delivery’ element of the process.
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
This paper reports on the performance of 58 11 to 12-year-olds on a spatial visualization task and a spatial orientation task. The students completed these tasks and explained their thinking during individual interviews. The qualitative data were analysed to inform pedagogical content knowledge for spatial activities. The study revealed that “matching” or “matching and eliminating” were the typical strategies that students employed on these spatial tasks. However, errors in making associations between parts of the same or different shapes were noted. Students also experienced general difficulties with visual memory and language use to explain their thinking. The students’ specific difficulties in spatial visualization related to obscured items, the perspective used, and the placement and orientation of shapes.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).