912 resultados para Information scientists
Resumo:
Cultural objects are increasingly generated and stored in digital form, yet effective methods for their indexing and retrieval still remain an important area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. We firstly discuss the requirements from a number of perspectives: users, content providers, content managers and technical systems. We then present an overview of our system architecture and describe various techniques which underlie the major components of the system. These include: automatic object category detection; user-driven tagging; metadata transform and augmentation, and an expression language for digital cultural objects. In addition, we discuss our experience on testing and evaluating some existing collections, analyse the difficulties encountered and propose ways to address these problems.
Resumo:
The aim of this paper is to provide a contemporary summary of statistical and non-statistical meta-analytic procedures that have relevance to the type of experimental designs often used by sport scientists when examining differences/change in dependent measure(s) as a result of one or more independent manipulation(s). Using worked examples from studies on observational learning in the motor behaviour literature, we adopt a random effects model and give a detailed explanation of the statistical procedures for the three types of raw score difference-based analyses applicable to between-participant, within-participant, and mixed-participant designs. Major merits and concerns associated with these quantitative procedures are identified and agreed methods are reported for minimizing biased outcomes, such as those for dealing with multiple dependent measures from single studies, design variation across studies, different metrics (i.e. raw scores and difference scores), and variations in sample size. To complement the worked examples, we summarize the general considerations required when conducting and reporting a meta-analysis, including how to deal with publication bias, what information to present regarding the primary studies, and approaches for dealing with outliers. By bringing together these statistical and non-statistical meta-analytic procedures, we provide the tools required to clarify understanding of key concepts and principles.
Resumo:
If Australian scientists are to fully and actively participate in international scientific collaborations utilising online technologies, policies and laws must support the data access and reuse objectives of these projects. To date Australia lacks a comprehensive policy and regulatory framework for environmental information and data generally. Instead there exists a series of unconnected Acts that adopt historically-based, sector-specific approaches to the collection, use and reuse of environmental information. This paper sets out the findings of an analysis of a representative sample of Australian statutes relating to environmental management and protection to determine the extent to which they meet best practice criteria for access to and reuse of environmental information established in international initiatives. It identifies issues that need to be addressed in the legislation governing environmental information to ensure that Australian scientists are able to fully engage in international research collaborations.
Resumo:
Information accountability is seen as a mode of usage control on the Web. Due to its many dimensions, information accountability has been expressed in various ways by computer scientists to address security and privacy in recent times. Information accountability is focused on how users participate in a system and the underlying policies that govern the participation. Healthcare is a domain in which the principles of information accountability can be utilised well. Modern health information systems are Internet based and the discipline is called eHealth. In this paper, we identify and discuss the goals of accountability systems and present the principles of information accountability. We characterise those principles in eHealth and discuss them contextually. We identify the current impediments to eHealth in terms of information privacy issues of eHealth consumers together with information usage requirements of healthcare providers and show how information accountability can be used in a healthcare context to address these needs. The challenges of implementing information accountability in eHealth are also discussed in terms of our efforts thus far.
Resumo:
Disagreement within the global science community about the certainty and causes of climate change has led the general public to question what to believe and who to trust on matters related to this issue. This paper reports on qualitative research undertaken with Australian residents from two rural areas to explore their perceptions of climate change and trust in information providers. While overall, residents tended to agree that climate change is a reality, perceptions varied in terms of its causes and how best to address it. Politicians, government, and the media were described as untrustworthy sources of information about climate change, with independent scientists being the most trusted. The vested interests of information providers appeared to be a key reason for their distrust. The findings highlight the importance of improved transparency and consultation with the public when communicating information about climate change and related policies.
Resumo:
Information security and privacy in the healthcare domain is a complex and challenging problem for computer scientists, social scientists, law experts and policy makers. Appropriate healthcare provision requires specialized knowledge, is information intensive and much patient information is of a particularly sensitive nature. Electronic health record systems provide opportunities for information sharing which may enhance healthcare services, for both individuals and populations. However, appropriate information management measures are essential for privacy preservation...
Resumo:
This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.
Resumo:
Information security and privacy in the healthcare domain is a complex and challenging problem for computer scientists, social scientists, law experts and policy makers. Appropriate healthcare provision requires specialized knowledge, is information intensive and much patient information is of a particularly sensitive nature. Electronic health record systems provide opportunities for information sharing which may enhance healthcare services, for both individuals and populations. However, appropriate information management measures are essential for privacy preservation...
Resumo:
Expert interceptive actions are grounded in both perceptual judgment and movement control, yet research has largely focused on the role of anticipation. More recently, the emergence of ecological psychology has provided movement scientists with opportunities to develop further understanding of the processes underpinning the development of expert information-movement couplings. In this chapter we discuss key research that has enhanced our understanding of perceptual learning with specific focus on the concepts of education of attention and calibration. We conclude by discussing the practical implications of this research in the study of expertise highlighting the need for future research using sporting tasks.
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.