162 resultados para Information processing
Resumo:
Gray‘s (2000) revised Reinforcement Sensitivity Theory (r-RST) was used to investigate personality effects on information processing biases to gain-framed and loss-framed anti-speeding messages and the persuasiveness of these messages. The r-RST postulates that behaviour is regulated by two major motivational systems: reward system or punishment system. It was hypothesised that both message processing and persuasiveness would be dependent upon an individual‘s sensitivity to reward or punishment. Student drivers (N = 133) were randomly assigned to view one of four anti-speeding messages or no message (control group). Individual processing differences were then measured using a lexical decision task, prior to participants completing a personality and persuasion questionnaire. Results indicated that participants who were more sensitive to reward showed a marginally significant (p = .050) tendency to report higher intentions to comply with the social gain-framed message and demonstrate a cognitive processing bias towards this message, than those with lower reward sensitivity.
Resumo:
Background When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB. Methodology/Principal Findings The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB. Conclusions/Significance Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection.
Resumo:
Purpose: This study investigated the impact of simulated hyperopic anisometropia and sustained near work on performance of academic-related measures in children. Methods: Participants included 16 children (mean age: 11.1 ± 0.8 years) with minimal refractive error. Academic-related outcome measures included a reading test (Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (Developmental Eye Movement test). Performance was assessed with and without 0.75 D of imposed monocular hyperopic defocus (administered in a randomised order), before and after 20 minutes of sustained near work. Unilateral hyperopic defocus was systematically assigned to either the dominant or non-dominant sighting eye to evaluate the impact of ocular dominance on any performance decrements. Results: Simulated hyperopic anisometropia and sustained near work both independently reduced performance on all of the outcome measures (p<0.001). A significant interaction was also observed between simulated anisometropia and near work (p<0.05), with the greatest decrement in performance observed during simulated anisometropia in combination with sustained near work. Laterality of the refractive error simulation (ocular dominance) did not significantly influence the outcome measures (p>0.05). A reduction of up to 12% in performance was observed across the range of academic-related measures following sustained near work undertaken during the anisometropic simulation. Conclusion: Simulated hyperopic anisometropia significantly impaired academic–related performance, particularly in combination with sustained near work. The impact of uncorrected habitual anisometropia on academic-related performance in children requires further investigation.
Resumo:
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.
Resumo:
We examine the impact of individual-specific information processing strategies (IPSs) on the inclusion/exclusion of attributes on the parameter estimates and behavioural outputs of models of discrete choice. Current practice assumes that individuals employ a homogenous IPS with regards to how they process attributes of stated choice (SC) experiments. We show how information collected exogenous of the SC experiment on whether respondents either ignored or considered each attribute may be used in the estimation process, and how such information provides outputs that are IPS segment specific. We contend that accounting the inclusion/exclusion of attributes will result in behaviourally richer population parameter estimates.
Resumo:
This study explores strategic decision-making (SDM) in micro-firms, an economically significant business subsector. As extant large- and small-firm literature currently proffers an incomplete characterization of SDM in very small enterprises, a multiple-case methodology was used to investigate how these firms make strategic decisions. Eleven Australian Information Technology service micro-firms participated in the study. Using an information-processing lens, the study uncovered patterns of SDM in micro-firms and derived a theoretical micro-firm SDM model. This research also identifies several implications for micro-firm management and directions for future research, contributing to the understanding of micro-firm SDM in both theory and practice.
Resumo:
Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.
Resumo:
This thesis examined the extent to which individual differences, as conceptualised by the revised Reinforcement Sensitivity Theory, influenced young drivers' information processing and subsequent acceptance of anti-speeding messages. Using a multi-method approach, the findings highlighted the utility of combining objective measures (a cognitive response time task and electroencephalography) with self-report measures to assess message processing and message acceptance, respectively. This body of research indicated that responses to anti-speeding messages may differ depending on an individual's personality disposition. Overall, the research provided further insight into the development of message strategies to target high risk drivers.
Resumo:
This paper describes our participation in the Chinese word segmentation task of CIPS-SIGHAN 2010. We implemented an n-gram mutual information (NGMI) based segmentation algorithm with the mixed-up features from unsupervised, supervised and dictionarybased segmentation methods. This algorithm is also combined with a simple strategy for out-of-vocabulary (OOV) word recognition. The evaluation for both open and closed training shows encouraging results of our system. The results for OOV word recognition in closed training evaluation were however found unsatisfactory.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.