41 resultados para Hydrogenated soy phosphatidylcholine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose was to determine intake of phytoestrogens in a sample of older Australian women, and to investigate associated lifestyle factors. Subjects were an age-stratified sample of 511 women aged 40-80 y, randomly selected from the electoral roll and participating in the Longitudinal Assessment of Ageing in Women at the Royal Brisbane and Women’s Hospital. A cross-sectional study was conducted to assess isoflavone and lignan intake over the past month from food and supplements using a 112-item phytoestrogen frequency questionnaire. Data were also collected on nutrient intakes, physical activity, smoking, alcohol, non-prescription supplements, hormone therapy, education and occupation. Logistic regression was used to evaluate associations between demographic and lifestyle variables and soy/linseed consumption while controlling for age. Isoflavone intakes were significantly higher in the younger compared to older age groups (p<0.001); there were no age-related differences in lignan intake. Forty-five percent of women consumed at least one serve of a soy and/or linseed item and were defined as a soy/linseed consumer. Median (range) intakes by consumers for isoflavones and lignans (3.9 (0-172) mg/d and 2.4 (0.1-33) mg/d) were higher than intakes by non-consumers (0.004 (0-2.6) mg/d and 1.57 (0.44-4.7) mg/d), respectively (p<0.001). Consumers had higher intakes of dietary fibre (p=0.003), energy (p=0.04) and polyunsaturated fat (p=0.004), and higher levels of physical activity (p=0.006), socio-economic position (p<0.001), education (p<0.001) and supplement use (p<0.001). Women who consumed soy or linseed foods differed in lifestyle and demographic characteristics suggesting these factors should be considered when investigating associations with chronic disease outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of cholesterol on activated protein C (APC) anticoagulant activity in plasma and on factor Va inactivation was investigated. Anticoagulant and procoagulant activities of phosphatidylcholine/phosphatidylserine (PC/PS) vesicles containing cholesterol were assessed in the presence and absence of APC using factor Xa-1-stage clotting and factor Va inactivation assays. Cholesterol at approximate physiological membrane levels (30%) in PC/PS (60%/10% w/w) vesicles prolonged the factor Xa-1-stage clotting time dose-dependently in the presence of APC but not in the absence of APC. APC-mediated cleavage of purified recombinant factor Va variants that were modified at specific APC cleavage sites (Q306/Q679-factor Va; Q506/Q679-factor Va) was studied to define the effects of cholesterol on APC cleavage at R506 and R306. When compared to control PC/PS vesicles, cholesterol in PC/PS vesicles enhanced factor Va inactivation and the rate of APC cleavage at both R506 and R306. Cholesterol also enhanced APC cleavage rates at R306 in the presence of the APC cofactor, protein S. In summary, APC anticoagulant activity in plasma and factor Va inactivation as a result of cleavages at R506 and R306 by APC is markedly enhanced by cholesterol in phospholipid vesicles. These results suggest that cholesterol in a membrane surface may selectively enhance APC activities. © 2005 International Society on Thrombosis and Haemostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface amorphous layer of articular cartilage is of primary importance to its load-bearing and lubrication function. This lipid-filled layer is degraded/disrupted or eliminated when cartilage degenerates due to diseases. This article examines further the characteristic of this surface overlay using a combination of microscopy and imaging methods to evaluate the hypothesis that the surface of articular cartilage can be repaired by exposing degraded cartilage to aqueous synthetic lipid mixtures. The preliminary results demonstrate that it is possible to create a new surface layer of phospholipids on the surface of cartilage following artificial lipid removal, but such a layer does not possess enough mechanical strength for physiological function when created with either unsaturated palmitoyloleoyl- phosphatidylcholine or saturated dipalmitoyl-phosphatidylcholine component of joint lipid composition alone. We conclude that this may be due to low structural cohesivity, inadequate time of exposure, and the mix/content of lipid in the incubation environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.