89 resultados para Haller, Johannes, 1487-1531.
Resumo:
In Service-Oriented Architectures (SOAs), software systems are decomposed into independent units, namely services, that interact with one another through message exchanges. To promote reuse and evolvability, these interactions are explicitly described right from the early phases of the development lifecycle. Up to now, emphasis has been placed on capturing structural aspects of service interactions. Gradually though, the description of behavioral dependencies between service interactions is gaining increasing attention as a means to push forward the SOA vision. This paper deals with the description of these behavioral dependencies during the analysis and design phases. The paper outlines a set of requirements that a language for modeling service interactions at this level should fulfill, and proposes a language whose design is driven by these requirements.
Resumo:
There is increasing interest in the role the environment plays in shaping the dietary behavior of youth, particularly in the context of obesity prevention. An overview of environmental factors associated with obesity-related dietary behaviors among youth is needed to inform the development of interventions. A systematic review of observational studies on environmental correlates of energy, fat, fruit/ vegetable, snack/fast food and soft drink intakes in children (4–12 years) and adolescents (13–18 years) was conducted. The results were summarized using the analysis grid for environments linked to obesity. The 58 papers reviewed mostly focused on sociocultural and economical–environmental factors at the household level. The most consistent associations were found between parental intake and children’s fat, fruit/vegetable intakes, parent and sibling intake with adolescent’s energy and fat intakes and parental education with adolescent’s fruit/ vegetable intake. A less consistent but positive association was found for availability and accessibility on children’s fruit/vegetable intake. Environmental factors are predominantly studied at the household level and focus on sociocultural and economic aspects. Most consistent associations were found for parental influences (parental intake and education).More studies examining environmental factors using longitudinal study designs and validated measures are needed for solid evidence to inform interventions.
Resumo:
There is increased recognition that determinants of health should be investigated in a life-course perspective. Retirement is a major transition in the life course and offers opportunities for changes in physical activity that may improve health in the aging population. The authors examined the effect of retirement on changes in physical activity in the GLOBE Study, a prospective cohort study known by the Dutch acronym for "Health and Living Conditions of the Population of Eindhoven and surroundings," 1991–2004. They followed respondents (n = 971) by postal questionnaire who were employed and aged 40–65 years in 1991 for 13 years, after which they were still employed (n = 287) or had retired (n = 684). Physical activity included 1) work-related transportation, 2) sports participation, and 3) nonsports leisure-time physical activity. Multinomial logistic regression analyses indicated that retirement was associated with a significantly higher odds for a decline in physical activity from work-related transportation (odds ratio (OR) = 3.03, 95% confidence interval (CI): 1.97, 4.65), adjusted for sex, age, marital status, chronic diseases, and education, compared with remaining employed. Retirement was not associated with an increase in sports participation (OR = 1.12, 95% CI: 0.71, 1.75) or nonsports leisure-time physical activity (OR = 0.80, 95% CI: 0.54, 1.19). In conclusion, retirement introduces a reduction in physical activity from work-related transportation that is not compensated for by an increase in sports participation or an increase in nonsports leisure-time physical activity.
Resumo:
Introduction : For the past decade, three dimensional (3D) culture has served as a foundation for regenerative medicine study. With an increasing awareness of the importance of cell-cell and cell-extracellular matrix interactions which are lacking in 2D culture system, 3D culture system has been employed for many other applications namely cancer research. Through development of various biomaterials and utilization of tissue engineering technology, many in vivo physiological responses are now better understood. The cellular and molecular communication of cancer cells and their microenvironment, for instance can be studied in vitro in 3D culture system without relying on animal models alone. Predilection of prostate cancer (CaP) to bone remains obscure due to the complexity of the mechanisms and lack of proper model for the studies. In this study, we aim to investigate the interaction between CaP cells and osteoblasts simulating the natural bone metastasis. We also further investigate the invasiveness of CaP cells and response of androgen sensitve CaP cells, LNCaP to synthetic androgen.----- Method : Human osteoblast (hOB) scaffolds were prepared by seeding hOB on medical grade polycaprolactone-tricalcium phosphate (mPLC-TCP) scaffolds and induced to produce bone matrix. CaP cell lines namely wild type PC3 (PC3-N), overexpressed prostate specific antigen PC3 (PC3k3s5) and LNCaP were seeded on hOB scaffolds as co-cultures. Morphology of cells was examined by Phalloidin-DAPI and SEM imaging. Gelatin zymography was performed on the 48 hours conditioned media (CM) from co-cultures to determine matrix metalloproteinase (MMP) activity. Gene expression of hOB/LNCaP co-cultures which were treated for 48 hours with 1nM synthetic androgen R1881 were analysed by quantitative real time PCR (qRT-PCR).----- Results : Co-culture of PCC/hOB revealed that the morphology of PCCs on the tissue engineered bone matrix varied from homogenous to heterogenous clusters. Enzymatically inactive pro-MMP2 was detected in CM from hOBs and PCCs cultured on scaffolds. Elevation in MMP9 activity was found only in hOB/PC3N co-culture. hOB/LNCaP co-culture showed increase in expression of key enzymes associated with steroid production which also corresponded to an increase in prostate specific antigen (PSA) and MMP9.----- Conclusions : Upregulation of MMP9 indicates involvement of ECM degradation during cancer invasion and bone metastases. Expression of enzymes involved in CaP progression, PSA, which is not expressed in osteoblasts, demonstrates that crosstalk between PCCs and osteoblasts may play a part in the aggressiveness of CaP. The presence of steroidogenic enzymes, particularly, RDH5, in osteoblasts and stimulated expression in co-culture, may indicate osteoblast production of potent androgens, fuelling cancer cell proliferation. Based on these results, this practical 3D culture system may provide greater understanding into CaP mediated bone metastasis. This allows the role of the CaP/hOB interaction with regards to invasive property and steroidogenesis to be further explored.
Resumo:
Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair. Modular hydrogel systems allow for systematic control over hydrogel properties, and advanced fabrication techniques allow for control over construct organization. These technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs for cartilage repair.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.
Resumo:
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.
Resumo:
Compared to people with a high socioeconomic status, those with a lower socioeconomic status are more likely to perceive their neighbourhood as unattractive and unsafe, which is associated with their lower levels of physical activity. Agreement between objective and perceived environmental factors is often found to be moderate or low, so it is questionable to what extent ‘creating supportive neighbourhoods’ would change neighbourhood perceptions. This study among residents (N=814) of fourteen neighbourhoods in the city of Eindhoven (the Netherlands), investigated to what extent socioeconomic differences in perceived neighbourhood safety and perceived neighbourhood attractiveness can be explained by five domains of objective neighbourhood features (i.e. design, traffic safety, social safety, aesthetics, and destinations), and to what extent other factors may play a role. Unfavourable neighbourhood perceptions of low socioeconomic groups partly reflected their actual less aesthetic and less safe neighbourhoods, and partly their perceptions of low social neighbourhood cohesion and adverse psychosocial circumstances.
Resumo:
This book focuses on practical applications for using adult and embryonic stem cells in the pharmaceutical development process. It emphasizes new technologies to help overcome the bottlenecks in developing stem cells as therapeutic agents. A key reference for professionals working in stem cell science, it presents the general principles and methodologies in stem cell research and covers topics such as derivitization and characterization of stem cells, stem cell culture and maintenance, stem cell engineering, applications of high-throughput screening, and stem cell genetic modification with their use for drug delivery.