50 resultados para Gonadotropin-Releasing Hormone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cushing's syndrome, which is characterized by excessive circulating glucocorticoid concentrations, maybe due to ACTH-dependent or -independent causes that include anterior pituitary and adrenal cortical tumors, respectively. ACTH secretion is stimulated by CRH, and we report a mouse model for Cushing's syndrome due to an N-ethyl-N-nitrosourea (ENU) induced Crh mutation at -120 bp of the promoter region, which significantly increased luciferase reporter activity and was thus a gain-of-function mutation. Crh -120/+ mice, when compared with wild-type littermates, had obesity, muscle wasting, thin skin, hair loss, and elevated plasma and urinary concentrations of corticosterone. In addition, Crh-120/+ mice had hyperglycemia, hyperfructosaminemia, hyperinsulinemia, hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia but normal adiponectin. Crh -120/+ mice also had low bone mineral density, hypercalcemia, hypercalciuria, and decreased concentrations of plasma PTH and osteocalcin. Bone histomorphometry revealed Crh-120/+ mice to have significant reductions in mineralizing surface area, mineral apposition, bone formation rates, osteoblast number, and the percentage of corticoendosteal bone covered by osteoblasts, which was accompanied by an increase in adipocytes in the bone marrow. Thus, a mouse model for Cushing's syndrome has been established, and this will help in further elucidating the pathophysiological effects of glucocorticoid excess and in evaluating treatments for corticosteroid-induced osteoporosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcohol accounts for major disability worldwide and available treatments are insufficient. A massive growth in the area of addiction neuroscience over the last several decades has not resulted in a corresponding expansion of treatment options available to patients. In this chapter, we describe our experience with building translational research programs aimed at developing novel pharmacotherapies for alcoholism. The narrative is based on experience and considerations made in the course of building these programs, and work on four mechanisms targeted by our libraries: cholinergic nicotine receptors, receptors for corticotropin-releasing hormone (CRH), neurokinin 1 (NK1) receptors for substance P (SP) and hypocretin/orexin receptors. Around this experience, we discuss issues we believe to be critical for successful translation of basic addiction neuroscience into treatments, and complementarities between academic and other actors that in our assessment need to be harnessed in order to bring treatments to the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a woman traveling from one of the world’s youngest nations, Australia, my aim was to examine if western ideology had infiltrated life styles of Chinese women since the “opening up” of China in the 1980s. It is through a metaphoric examination of the contents of women’s handbags – traditionally a very secretive environment – that I sought to investigate aspects of a gender-based economic and social basis of China in 1999.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin was first identified in 1999 by Kojima and colleagues (Kojima et al. 1999) as the natural ligand of an orphan G-protein coupled receptor, the Growth Hormone (GH) secretagogue receptor (GHS-R), which had been identified several years earlier through the actions of a growing number of synthetic growth hormone releasing peptides (GHRPs) and non-peptidyl GH secretagogues (Howard et al. 1996). Early studies, therefore, focussed on the actions of ghrelin as an important regulator of GH secretion. As a result Kojima et al (1999) designated this GH-releasing peptide, ghrelin (ghre is the Proto-Indo-European root of the word 'grow'). We now recognise that the functions of ghrelin extend well beyond its GH releasing actions and that it is a multi-functional peptide with both endocrine and autocrine/paracrine modes of action.