151 resultados para Eulerþs angles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To investigate hyperopic shifts and the oblique (or 45-degree/135-degree) component of astigmatism at large angles in the horizontal visual field using the Hartmann-Shack technique. Methods The adult participants consisted of 6 hypermetropes, 13 emmetropes and 11 myopes. Measurements were made with a modified COAS-HD Hartmann-Shack aberrometer across T60 degrees along the horizontal visual field in 5-degree steps. Eyes were dilated with 1% cyclopentolate. Peripheral refraction was estimated as mean spherical (or spherical equivalent) refraction, with/against the rule of astigmatism and oblique astigmatism components, and as horizontal and vertical refraction components based on 3-mm major diameter elliptical pupils. Results Thirty percent of eyes showed a pattern that was a combination of type IV and type I patterns of Rempt et al. (Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971;162:1Y10), which shows the characteristics of type IV (relative hypermetropia along the vertical meridian and relative myopia along the horizontal meridian) out to an angle of between 40 and 50 degrees before behaving like type I (both meridians show relative hypermetropia). We classified this pattern as type IV/I. Seven of 13 emmetropes had this pattern. As a group, there was no significant variation of the oblique component of astigmatism with angle, but about one-half of the eyes showed significant positive slopes (more positive or less negative values in the nasal field than in the temporal field) and one-fourth showed significant negative slopes. Conclusions It is often considered that a pattern of relative peripheral hypermetropia predisposes to the development of myopia. In this context, the finding of a considerable portion of emmetropes with the IV/I pattern suggests that it is unlikely that refraction at visual field angles beyond 40 degrees from fixation contributes to myopia development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proportion of Australians to finish uni is about 25 per cent. This figure varies dramatically from the amount of Indigenous kids who attain the same result. Only five percent of Aboriginal and Torres Strait Islanders gain a degree. That's why Marnee Shay from Ilkey on the Sunshine Coast is bucking the trend... above and beyond expectations. She's believed to be the first Aboriginal recipient of the Chancellor's Medal at the University of the Sunshine Coast, and she's now starting a PHD at QUT in Brisbane. The ABC's Jon Coghill asked her about her studies and what the medal signifies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To help with the clinical screening and diagnosis of abdominal aortic aneurysm (AAA), we evaluated the effect of inflow angle (IA) and outflow bifurcation angle (BA) on the distribution of blood flow and wall shear stress (WSS) in an idealized AAA model. A 2D incompressible Newtonian flow is assumed and the computational simulation is performed using finite volume method. The results showed that the largest WSS often located at the proximal and the distal end of the AAA. An increase in IA resulted in an increase in maximum WSS. We also found that WSS was maximal when BA was 90°. IA and BA are two important geometrical factors, they may help with AAA risk assessment along with the commonly used AAA diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of Cobb angles from radiographs is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. Between November 2008 and December 2008 20 patients were selected at random from the Paediatric Spine Research Groups Database. A power calculation was performed which indicated if n=240 measurements the study had a 96% chance of detecting a 5 degree difference between groups. All patients had idiopathic scoliosis with a range of curve types and severities. The study found the i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper assesses and compares the performances of two daylight collection strategies, one passive and one active, for large-scale mirrored light pipes (MLP) illuminating deep plan buildings. Both strategies use laser cut panels (LCP) as the main component of the collection system. The passive system comprises LCPs in pyramid form, whereas the active system uses a tiled LCP on a simple rotation mechanism that rotates 360° in 24 hours. Performance is assessed using scale model testing under sunny sky conditions and mathematical modelling. Results show average illuminance levels for the pyramid LCP ranging from 50 to 250 lux and 150 to 200 lux for the rotating LCPs. Both systems improve the performance of a MLP. The pyramid LCP increases the performance of a MLP by 2.5 times and the rotating LCP by 5 times, when compared to an open pipe particularly for low sun elevation angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of Cobb angles on radiographs of patients with spinal deformities is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. The i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refraction may be affected by the forces of lids and extraocular muscles when eye direction and head direction are not aligned (oblique viewing) which might potentially influence past findings on peripheral refraction of the eye. We investigated the effect of oblique viewing on axial and peripheral refraction. In a first experiment, cycloplegic axial refractions were determined when subjects' heads were positioned to look straight-ahead through an open-view autorefractor and when the heads were rotated to the right or left by 30° with compensatory eye rotation (oblique viewing). Subjects were 16 young emmetropes (18–35 years), 22 young myopes (19–36 years) and 15 old emmetropes (45–60 years). In a second experiment, cycloplegic peripheral refraction measurements were taken out to ±34° horizontally from fixation while the subjects rotated their heads to match the peripheral refraction angles (eye in primary position with respect to the head) or the eyes were rotated with respect to the head (oblique viewing). Subjects were 10 emmetropes and 10 myopes. We did not find any significant changes in axial or peripheral refraction upon oblique viewing for any of the subject groups. In general for the range of horizontal angles used, it is not critical whether or not the eye is rotated with respect to the head during axial or peripheral refraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.