923 resultados para Engineering teachers
Resumo:
Engineering education is underrepresented in Australia at the primary, middle school and high school levels. Understanding preservice teachers’ preparedness to be involved in engineering will be important for developing an engineering curriculum. This study administered a literature-based survey to 36 preservice teachers, which gathered data about their perceptions of engineering and their predispositions for teaching engineering. Findings indicated that the four constructs associated with the survey had acceptable Cronbach alpha scores (i.e., personal professional attributes .88, student motivation .91, pedagogical knowledge .91, and fused curricula .89). However, there was no “disagree” or “strongly disagree” response greater than 22% for any of the 25 survey items. Generally, these preservice teachers indicated predispositions for teaching engineering in the middle school. Extensive scaffolding and support with education programs will assist preservice teachers to develop confidence in this field. Governments and education departments need to recognise the importance of engineering education, and universities must take a stronger role in developing engineering education curricula.
Analysing preservice teachers' potential for implementing engineering education in the middle school
Resumo:
Engineering is pivotal to any country's development. Yet there are insufficient engineers to take up available positions in many countries, including Australia (Engineers Australia, 2008). Engineering education is limited in Australia at the primary, middle and high school levels. One of the starting points for addressing this shortfall lies in preservice teacher education. This study explores second-year preservice teachers' potential to teach engineering in middle school, following their engagement with engineering concepts in their science curriculum unit and their teaching of engineering activities to Year 7 students. Using a literature-based pretest-posttest survey, items were categorised into four constructs (ie. personal professional attributes, student motivation, pedagogical knowledge and fused curricula). Results indicated that the preservice teachers' responses had not changed for instilling positive attitudes (88%) and accepting advice from colleagues (94%). However, there was statistical significance with 9 of the 25 survey items (p<0.05) after the preservice teachers' involvement in engineering activities. Fusing engineering education with other subjects, such as mathematics and science, is an essential first step in promoting preservice teachers' potential to implement engineering education in the middle school.
Resumo:
This research thesis focuses on the experiences of pre-service drama teachers and considers how process drama may assist them to reflect on key aspects of professional ethics such as mandatory codes or standards, principled moral reasoning, moral character, moral agency, and moral literacy. Research from higher education provides evidence that current pedagogical approaches used to prepare pre –professionals for practice in medicine, engineering, accountancy, business, psychology, counselling, nursing and education, rarely address the more holistic or affective dimensions of professional ethics such as moral character. Process drama, a form of educational drama, is a complex improvisational group experience that invites participants to create and assume roles, and select and manage symbols in order to create a fictional world exploring human experience. Many practitioners claim that process drama offers an aesthetic space to develop a deeper understanding of self and situations, expanding the participant’s consciousness and ways of knowing. However, little research has been conducted into the potential efficacy of process drama in professional ethics education for pre-professionals. This study utilizes practitioner research and case study to explore how process drama may contribute to the development of professional ethics education and pedagogy.
Resumo:
This paper presents a phenomenographic analysis of the conceptions of teaching and learning held by a sample of 16 secondary school teachers in two Australian schools. It provides descriptions of four categories, derived from pooled data, of the ways in which these teachers thought about teaching and about learning, their teaching strategies, and their focus on student or content. The categories for teaching and learning are described with each teacher allocated to the category most typical of their conceptions of teaching and of learning. The lack of congruence, in some cases, between the conceptions of teaching and of learning held by these teachers is discussed.
Resumo:
Nearly 500 secondary students in 24 classes were surveyed and four students in each class interviewed concerning their approaches to learning and perceptions of their classroom environment. While interviewed students with deep approaches to learning generally demonstrated a more sophisticated understanding of the learning opportunities offered to them than did students with surface approaches, teaching strategies also influenced students' perceptions. When teachers focused strongly on actively engaging students and creating a supportive environment, students with both deep and surface approaches focused on student-centred aspects of the class. In contrast, when traditional expository teaching methods were used exclusively, students with deep and surface approaches both focused on transmission and reproduction.
Resumo:
Australia has had many inquiries into teaching and teacher education over the last decade. Standards for teaching have been produced by national education systems with many state systems following suit. The Queensland College of Teachers (QCT) advocates ten professional teaching standards for teachers and preservice teachers. How can preservice teachers be measured against advocated professional standards? This study investigated 106 second-year preservice teachers’ perceptions of their development against the QCT standards. A pretest-posttest survey instrument was developed based on the QCT standards and administered to these preservice teachers before and after their science education coursework. Percentages, ANOVAs and t-tests were generated to analyse the results. Findings indicated that 22 of the 24 paired pretest-posttest items were highly significant (p<.001). Percentage increases ranged from as low as 27% in the pretest to as high as 97% in the posttest, yet, there were two items with lower significance (i.e., working in professional science education teams and supporting students’ participation in society). Understanding preservice teachers’ perceptions of their abilities to implement these standards may be a step towards the process of determining the achievement of teaching standards; however, more rigorous measurements will need to be developed for both teachers and preservice teachers. University coursework and related assessments can provide an indication of achieving these standards, especially authentic assessment of preservice teachers’ practices.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
In this column, Dr. Peter Corke of CSIRO, Australia, gives us a description of MATLAB Toolboxes he has developed. He has been passionately developing tools to enable students and teachers to better understand the theoretical concepts behind classical robotics and computer vision through easy and intuitive simulation and visualization. The results of this labor of love have been packaged as MATLAB Toolboxes: the Robotics Toolbox and the Vision Toolbox. –Daniela Rus, RAS Education Cochair
Resumo:
In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growingimportance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.
Resumo:
The process of becoming numerate begins in the early years. According to Vygotskian theory (1978), teachers are More Knowledgeable Others who provide and support learning experiences that influence children’s mathematical learning. This paper reports on research that investigates three early childhood teachers mathematics content knowledge. An exploratory, single case study utilised data collected from interviews, and email correspondence to investigate the teachers’ mathematics content knowledge. The data was reviewed according to three analytical strategies: content analysis, pattern matching, and comparative analysis. Findings indicated there was variation in teachers’ content knowledge across the five mathematical strands and that teachers might not demonstrate the depth of content knowledge that is expected of four year specially trained early years’ teachers. A significant factor that appeared to influence these teachers’ content knowledge was their teaching experience. Therefore, an avenue for future research is the investigation of factors that influence teachers’ content numeracy knowledge.
Resumo:
Adolescents are both aware of and have the impetuous to exploit aspects of Science, Technology, Engineering and Mathematics (STEM) within their personal lives. Whether they are surfing, cycling, skateboarding or shopping, STEM concepts impact their lives. However science, mathematics, engineering and technology are still treated in the classroom as separate fragmented entities in the educational environment where most classroom talk is seemingly incomprehensible to the adolescent senses. The aim of this study was to examine the experiences of young adolescents with the aim of transforming school learning at least of science into meaningful experiences that connected with their lives using a self-study approach. Over a 12-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of pedagogical practices with his Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. Providing a more contextually relevant environment fostered meta-cognitive practices, encouraged new learning through open dialogue, multi-modal representations and assessments that contributed to building upon, re-affirming, or challenging both the students' prior learning and the teacher’s pedagogical content knowledge. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provided an authentic model for reforming pedagogy in STEM classes.
Resumo:
This paper focuses on implementing engineering education in middle school classrooms (grade levels 7-9). One of the aims of the study was to foster students’ and teachers’ knowledge and understanding of engineering in society. Given the increasing importance of engineering in shaping our daily lives, it is imperative that we foster in students an interest and drive to participate in engineering education, increase their awareness of engineering as a career path, and inform them of the links between engineering and the enabling subjects, mathematics, science, and technology. Data for the study are drawn from five classes across three schools. Grade 7 students’ responded to initial whole class discussions on what is an engineer, what is engineering, what characteristics engineers require, engineers (family/friends) that they know, and subjects that may facilitate an engineering career. Students generally viewed engineers as creative, future-oriented, and artistic problem finders and solvers; planners and designers; “seekers” and inventors; and builders of constructions. Students also viewed engineers as adventurous, decisive, community-minded, reliable, and “smart.” In addition to a range of mathematics and science topics, students identified business studies, ICT, graphics, art, and history as facilitating careers in engineering. Although students displayed a broadened awareness of engineering than the existing research suggests, there was limited knowledge of various engineering fields and a strong perception of engineering as large construction.
Resumo:
The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience- centred conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centred conception where teachers focused on challenging students with engaging problems; and (c) The Question-centred conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviours during professional development, with enhanced outcomes for engaging students in Science.
Resumo:
There is strong political and social interest in values education both internationally and across Australia. Investment in young children is recognised as important for the development of moral values for a cohesive society; however, little is known about early years teachers’ beliefs about moral values teaching and learning. The aim of the current study was to investigate the relationships between Australian early years teachers’ epistemic beliefs and their beliefs about children’s moral learning. Three hundred and seventy-nine teachers completed a survey about their personal epistemic beliefs and their beliefs about children’s moral learning. Results indicated that teachers with more sophisticated epistemic beliefs viewed children as capable of taking responsibility for their own moral learning. Conversely, teachers who held more naive or simplistic personal epistemic beliefs agreed that children need to learn morals through learning the rules for behaviour. Results are discussed in terms of the implications for moral pedagogy in the classroom and teacher professional development. It is suggested that in conjunction with explicitly reflecting on epistemic beliefs, professional development may need to assist teachers to ascertain how their beliefs might relate to their moral pedagogies in order to make any adjustments.