121 resultados para Energy Consumption Forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social marketers and governments have often targeted hard to reach or vulnerable groups (Gordon et al., 2006) such as young adults and low income earners. Past research has shown that low-income earners are often at risk of poor health outcomes and diminished lifestyle (Hampson et al., 2009; Scott et al., 2012). Young adults (aged 18 to 35) are in a transition phase of their life where lifestyle preferences are still being formed and are thus a useful target for long-term sustainable change. An area of focus for all levels of government is the use of energy with an aim to reduce consumption. There is little research to date that combines both of these groups and in particular in the context of household energy usage. Research into financially disadvantaged consumers is challenging the notion that that low income consumer purchasing and usage of products and services is based upon economic status (Sharma et al., 2012). Prior research shows higher income earners view items such as televisions and computers as necessities rather than non-essential (Karlsson et al., 2004). Consistent with this is growing evidence that low income earners purchase non-essential, energy intensive electronic appliances such as multiple big screen TV sets and additional refrigerators. With this in mind, there is a need for knowledge about how psychological and economic factors influence the energy consumption habits (e.g. appliances on standby power, leaving appliances turned on, running multiple devices at one time) of low income earners. Thus, our study sought to address the research question of: What are the factors that influence young adult low-income earners energy habits?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe our investigation of the cointegration and causal relationships between energy consumption and economic output in Australia over a period of five decades. The framework used in this paper is the single-sector aggregate production function, which is the first comprehensive approach used in an Australian study of this type to include energy, capital and labour as separate inputs of production. The empirical evidence points to a cointegration relationship between energy and output and implies that energy is an important variable in the cointegration space, as are conventional inputs capital and labour. We also find some evidence of bidirectional causality between GDP and energy use. Although the evidence of causality from energy use to GDP was relatively weak when using the thermal aggregate of energy use, once energy consumption was adjusted for energy quality, we found strong evidence of Granger causality from energy use to GDP in Australia over the investigated period. The results are robust, irrespective of the assumptions of linear trends in the cointegration models, and are applicable for different econometric approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces an energy-efficient Rate Adaptive MAC (RA-MAC) protocol for long-lived Wireless Sensor Networks (WSN). Previous research shows that the dynamic and lossy nature of wireless communication is one of the major challenges to reliable data delivery in a WSN. RA-MAC achieves high link reliability in such situations by dynamically trading off radio bit rate for signal processing gain. This extra gain reduces the packet loss rate which results in lower energy expenditure by reducing the number of retransmissions. RA-MAC selects the optimal data rate based on channel conditions with the aim of minimizing energy consumption. We have implemented RA-MAC in TinyOS on an off-the-shelf sensor platform (TinyNode), and evaluated its performance by comparing RA-MAC with state-ofthe- art WSN MAC protocol (SCP-MAC) by experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show:  Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load.  There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures.  The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases.  The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Australian Government is about to release Australia’s first sustainable population policy. Sustainable population growth, among other things, implies sustainable energy demand. Current modelling of future energy demand both in Australia and by agencies such as the International Energy Agency sees population growth as one of the key drivers of energy demand. Simply increasing the demand for energy in response to population policy is sustainable only if there is a radical restructuring of the energy system away from energy sources associated with environmental degradation towards one more reliant on renewable fuels and less reliant on fossil fuels. Energy policy can also address the present nexus between energy consumption per person and population growth through an aggressive energy efficiency policy. The paper considers the link between population policies and energy policies and considers how the overall goal of sustainability can be achieved. The methods applied in this analysis draw on the literature of sustainable development to develop elements of an energy planning framework to support a sustainable population policy. Rather than simply accept that energy demand is a function of population increase moderated by an assumed rate of energy efficiency improvement, the focus is on considering what rate of energy efficiency improvement is necessary to significantly reduce the standard connections between population growth and growth in energy demand and what policies are necessary to achieve this situation. Energy efficiency policies can only moderate unsustainable aspects of energy demand and other policies are essential to restructure existing energy systems into on-going sustainable forms. Policies to achieve these objectives are considered. This analysis shows that energy policy, population policy and sustainable development policies are closely integrated. Present policy and planning agencies do not reflect this integration and energy and population policies in Australia have largely developed independently and whether the outcome is sustainable is largely a matter of chance. A genuinely sustainable population policy recognises the inter-dependence between population and energy policies and it is essential that this is reflected in integrated policy and planning agencies