806 resultados para DESIGN III
Resumo:
We present the treatment rationale and study design of the MetLung phase III study. This study will investigate onartuzumab (MetMAb) in combination with erlotinib compared with erlotinib alone, as second- or third-line treatment, in patients with advanced non-small-cell lung cancer (NSCLC) who are Met-positive by immunohistochemistry. Approximately 490 patients (245 per treatment arm) will receive erlotinib (150 mg oral daily) plus onartuzumab or placebo (15 mg/kg intravenous every 3 weeks) until disease progression, unacceptable toxicity, patient or physician decision to discontinue, or death. The efficacy objectives of this study are to compare overall survival (OS) (primary endpoint), progression-free survival, and response rates between the 2 treatment arms. In addition, safety, quality of life, pharmacokinetics, and translational research will be investigated across treatment arms. If the primary objective (OS) is achieved, this study will provide robust results toward an alternative treatment option for patients with Met-positive second- or third-line NSCLC. © 2012 Elsevier Inc. All Rights Reserved.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
This study contributes to the growth of design knowledge in China, where vehicle design for the local, older user is in its initial developmental stages. Therefore, this research has explored the travel needs of older Chinese vehicle users in order to assist designers to better understand users’ current and future needs. A triangulation method consisting of interviews, logbook and co-discovery was used to collect multiple forms of data and so explore the research question. Grounded theory has been employed to analyze the research data. This study found that users’ needs are reflected through various ‘meanings’ that they attach to vehicles – meanings that give a tangible expression to their experiences. This study identified six older-user need categories: (i) safety, (ii) utility, (iii) comfort, (iv) identity, (v) emotion and (vi) spirituality. The interrelationships among these six categories are seen as an interactive structure, rather than as a linear or hierarchical arrangement. Chinese cultural values, which are generated from particular local context and users’ social practice, will play a dynamic role in linking and shaping the travel needs of older vehicle users in the future. Moreover, this study structures the older-user needs model into three levels of meaning, to give guidance to vehicle design direction: (i) the practical meaning level, (ii) the social meaning level and (ii) the cultural meaning level. This study suggests that a more comprehensive explanation exists if designers can identify the vehicle’s meaning and property associated with the fulfilled older users’ needs. However, these needs will vary, and must be related to particular technological, social, and cultural contexts. The significance of this study lies in its contributions to the body of knowledge in three areas: research methodology, theory and design. These theoretical contributions provide a series of methodological tools, models and approaches from a vehicle design perspective. These include a conditional/consequential matrix, a travel needs identification model, an older users’ travel-related needs framework, a user information structure model, and an Older-User-Need-Based vehicle design approach. These models suggest a basic framework for the new design process which might assist in the design of new vehicles to fulfil the needs of future, aging Chinese generations. The models have the potential to be transferred to other design domains and different cultural contexts.
Resumo:
Mainstream business process modelling techniques promote a design paradigm wherein the activities to be performed within a case, together with their usual execution order, form the backbone of a process model, on top of which other aspects are anchored. This paradigm, while eective in standardised and production-oriented domains, shows some limitations when confronted with processes where case-by-case variations and exceptions are the norm. In this thesis we develop the idea that the eective design of exible process models calls for an alternative modelling paradigm, one in which process models are modularised along key business objects, rather than along activity decompositions. The research follows a design science method, starting from the formulation of a research problem expressed in terms of requirements, and culminating in a set of artifacts that have been devised to satisfy these requirements. The main contributions of the thesis are: (i) a meta-model for object-centric process modelling incorporating constructs for capturing exible processes; (ii) a transformation from this meta-model to an existing activity-centric process modelling language, namely YAWL, showing the relation between object-centric and activity-centric process modelling approaches; and (iii) a Coloured Petri Net that captures the semantics of the proposed meta-model. The meta-model has been evaluated using a framework consisting of a set of work ow patterns. Moreover, the meta-model has been embodied in a modelling tool that has been used to capture two industrial scenarios.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
This paper investigates the control of a HVDC link, fed from an AC source through a controlled rectifier and feeding an AC line through a controlled inverter. The overall objective is to maintain maximum possible link voltage at the inverter while regulating the link current. In this paper the practical feedback design issues are investigated with a view of obtaining simple, robust designs that are easy to evaluate for safety and operability. The investigations are applicable to back-to-back links used for frequency decoupling and to long DC lines. The design issues discussed include: (i) a review of overall system dynamics to establish the time scale of different feedback loops and to highlight feedback design issues; (ii) the concept of using the inverter firing angle control to regulate link current when the rectifier firing angle controller saturates; and (iii) the design issues for the individual controllers including robust design for varying line conditions and the trade-off between controller complexity and the reduction of nonlinearity and disturbance effects
Resumo:
Our paper, “HCI & Sustainable Food Culture: A Design Framework for Engagement,” presented at the 2010 NordiCHI conference, introduced a design framework for understanding engagement between people and sustainable food cultures (Choi and Blevis, 2010). Our goal for this chapter “Advancing Design for Sustainable Food Cultures” is to expand our notion of this design framework and the programme of research it implies. This chapter presents the three elements of design framework for sustainability: (i) engagement across disciplines; (ii) engagement with and amongst users/non-users and; (iii) engagement for sustained usability. The uses a corresponding sample of photographic records of experiences that reflect three key issues in the current sustainable food domain: respectively, (i) context of food cultures, (ii) farmers’ markets, and (iii) producing food.
Resumo:
Here we present a sequential Monte Carlo approach that can be used to find optimal designs. Our focus is on the design of phase III clinical trials where the derivation of sampling windows is required, along with the optimal sampling schedule. The search is conducted via a particle filter which traverses a sequence of target distributions artificially constructed via an annealed utility. The algorithm derives a catalogue of highly efficient designs which, not only contain the optimal, but can also be used to derive sampling windows. We demonstrate our approach by designing a hypothetical phase III clinical trial.
Resumo:
The overarching aim of this thesis was to investigate how processes of perception and action emerge under changing informational constraints during performance of multi-articular interceptive actions. Interceptive actions provide unique opportunities to study processes of perception and action in dynamic performance environments. The movement model used to exemplify the functionally coupled relationship between perception and action, from an ecological dynamics perspective, was cricket batting. Ecological dynamics conceptualises the human body as a complex system composed of many interacting sub-systems, and perceptual and motor system degrees of freedom, which leads to the emergence of patterns of behaviour under changing task constraints during performance. The series of studies reported in the Chapters of this doctoral thesis contributed to understanding of human behaviour by providing evidence of key properties of complex systems in human movement systems including self-organisation under constraints and meta-stability. Specifically, the studies: i) demonstrated how movement organisation (action) and visual strategies (perception) of dynamic human behaviour are constrained by changing ecological (especially informational) task constraints; (ii) provided evidence for the importance of representative design in experiments on perception and action; and iii), provided a principled theoretical framework to guide learning design in acquisition of skill in interceptive actions like cricket batting.
Resumo:
The overarching aim of this programme of work was to evaluate the effectiveness of the existing learning environment within the Australian Institute of Sport (AIS) elite springboard diving programme. Unique to the current research programme, is the application of ideas from an established theory of motor learning, specifically ecological dynamics, to an applied high performance training environment. In this research programme springboard diving is examined as a complex system, where individual, task, and environmental constraints are continually interacting to shape performance. As a consequence, this thesis presents some necessary and unique insights into representative learning design and movement adaptations in a sample of elite athletes. The questions examined in this programme of work relate to how best to structure practice, which is central to developing an effective learning environment in a high performance setting. Specifically, the series of studies reported in the chapters of this doctoral thesis: (i) provide evidence for the importance of designing representative practice tasks in training; (ii) establish that completed and baulked (prematurely terminated) take-offs are not different enough to justify the abortion of a planned dive; and (iii), confirm that elite athletes performing complex skills are able to adapt their movement patterns to achieve consistent performance outcomes from variable dive take-off conditions. Chapters One and Two of the thesis provide an overview of the theoretical ideas framing the programme of work, and include a review of literature pertinent to the research aims and subsequent empirical chapters. Chapter Three examined the representativeness of take-off tasks completed in the two AIS diving training facilities routinely used in springboard diving. Results highlighted differences in the preparatory phase of reverse dive take-offs completed by elite divers during normal training tasks in the dry-land and aquatic training environments. The most noticeable differences in dive take-off between environments began during the hurdle (step, jump, height and flight) where the diver generates the necessary momentum to complete the dive. Consequently, greater step lengths, jump heights and flight times, resulted in greater board depression prior to take-off in the aquatic environment where the dives required greater amounts of rotation. The differences observed between the preparatory phases of reverse dive take-offs completed in the dry-land and aquatic training environments are arguably a consequence of the constraints of the training environment. Specifically, differences in the environmental information available to the athletes, and the need to alter the landing (feet first vs. wrist first landing) from the take-off, resulted in a decoupling of important perception and action information and a decomposition of the dive take-off task. In attempting to only practise high quality dives, many athletes have followed a traditional motor learning approach (Schmidt, 1975) and tried to eliminate take-off variations during training. Chapter Four examined whether observable differences existed between the movement kinematics of elite divers in the preparation phases of baulked (prematurely terminated) and completed take-offs that might justify this approach to training. Qualitative and quantitative analyses of variability within conditions revealed greater consistency and less variability when dives were completed, and greater variability amongst baulked take-offs for all participants. Based on these findings, it is probable that athletes choose to abort a planned take-off when they detect small variations from the movement patterns (e.g., step lengths, jump height, springboard depression) of highly practiced comfortable dives. However, with no major differences in coordination patterns (topology of the angle-angle plots), and the potential for negative performance outcomes in competition, there appears to be no training advantage in baulking on unsatisfactory take-offs during training, except when a threat of injury is perceived by the athlete. Instead, it was considered that enhancing the athletes' movement adaptability would be a more functional motor learning strategy. In Chapter Five, a twelve-week training programme was conducted to determine whether a sample of elite divers were able to adapt their movement patterns and complete dives successfully, regardless of the perceived quality of their preparatory movements on the springboard. The data indeed suggested that elite divers were able to adapt their movements during the preparatory phase of the take-off and complete good quality dives under more varied take-off conditions; displaying greater consistency and stability in the key performance outcome (dive entry). These findings are in line with previous research findings from other sports (e.g., shooting, triple jump and basketball) and demonstrate how functional or compensatory movement variability can afford greater flexibility in task execution. By previously only practising dives with good quality take-offs, it can be argued that divers only developed strong couplings between information and movement under very specific performance circumstances. As a result, this sample was sometimes characterised by poor performance in competition when the athletes experienced a suboptimal take-off. Throughout this training programme, where divers were encouraged to minimise baulking and attempt to complete every dive, they demonstrated that it was possible to strengthen the information and movement coupling in a variety of performance circumstances, widening of the basin of performance solutions and providing alternative couplings to solve a performance problem even when the take-off was not ideal. The results of this programme of research provide theoretical and experimental implications for understanding representative learning design and movement pattern variability in applied sports science research. Theoretically, this PhD programme contributes empirical evidence to demonstrate the importance of representative design in the training environments of high performance sports programmes. Specifically, this thesis advocates for the design of learning environments that effectively capture and enhance functional and flexible movement responses representative of performance contexts. Further, data from this thesis showed that elite athletes performing complex tasks were able to adapt their movements in the preparatory phase and complete good quality dives under more varied take-off conditions. This finding signals some significant practical implications for athletes, coaches and sports scientists. As such, it is recommended that care should be taken by coaches when designing practice tasks since the clear implication is that athletes need to practice adapting movement patterns during ongoing regulation of multi-articular coordination tasks. For example, volleyball servers can adapt to small variations in the ball toss phase, long jumpers can visually regulate gait as they prepare for the take-off, and springboard divers need to continue to practice adapting their take-off from the hurdle step. In summary, the studies of this programme of work have confirmed that the task constraints of training environments in elite sport performance programmes need to provide a faithful simulation of a competitive performance environment in order that performance outcomes may be stabilised with practice. Further, it is apparent that training environments can be enhanced by ensuring the representative design of task constraints, which have high action fidelity with the performance context. Ultimately, this study recommends that the traditional coaching adage 'perfect practice makes perfect", be reconsidered; instead advocating that practice should be, as Bernstein (1967) suggested, "repetition without repetition".
Resumo:
This chapter describes an innovative method of curriculum design that is based on combining phenomenographic research, and the associated variation theory of learning, with the notion of disciplinary threshold concepts to focus specialised design attention on the most significant and difficult parts of the curriculum. The method involves three primary stages: (i) identification of disciplinary concepts worthy of intensive curriculum design attention, using the criteria for threshold concepts; (ii) action research into variation in students’ understandings/misunderstandings of those concepts, using phenomenography as the research approach; (iii) design of learning activities to address the poorer understandings identified in the second stage, using variation theory as a guiding framework. The curriculum design method is inherently theory and evidence based. It was developed and trialed during a two-year project funded by the Australian Learning and Teaching Council, using physics and law disciplines as case studies. Disciplinary teachers’ perceptions of the impact of the method on their teaching and understanding of student learning were profound. Attempts to measure the impact on student learning were less conclusive; teachers often unintentionally deviated from the design when putting it into practice for the first time. Suggestions for improved implementation of the method are discussed.
Resumo:
This special issue of the Journal of Learning Design, led by Jill Franz and Lindy Osborne, from the School of Design in the Creative Industries Faculty at the Queensland University of Technology, is grounded in Design Education. Its papers are drawn from differing fields of design: digital media, architecture, and environmental design. Each makes use of technologies in differing ways but all share the singular purpose of achieving enhanced learning outcomes from students.
Resumo:
Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].