136 resultados para Cooperative industrial research
Resumo:
The Cooperative Research Centre (CRC) for Construction Innovation research project 2001-008-C: ‘Project Team Integration: Communication, Coordination and Decision Support’, is supported by a number of Australian industry, government and university based project partners including: Queensland University of Technology (QUT); Commonwealth Scientific Industrial Research Organisation (CSIRO), University of Newcastle; Queensland Department of Public Works (QDPW); and the Queensland Department of Main Roads (QDMR). Supporting the various research aims and objectives of the 2001-008-C (Part B) QUT / Industry Partner agreements, and as a major deliverable for the project, this report is not intended as a comprehensive statement of Architectural, Engineering and Contractor (AEC) industry best practice recommendations. Rather it should read as a set of research and industry recommended guidelines, based on extensive literature reviews and two years worth of investigative activities examining both public and private industry uptake of innovative information and communication technology (ICT) solutions, whilst highlighting the overall need for culture change.
Resumo:
This paper describes current research at the Australian Centre for Field Robotics (ACFR) in collaboration with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) within the Cooperative Research Centre (CRC) for Mining Technology and Equipment (CMTE) towards achieving autonomous navigation of underground vehicles, like a Load-Haul-Dump (LHD) truck. This work is being sponsored by the mining industry through the Australian Mineral Industries Research Association Limited (AMIRA). Robust and reliable autonomous navigation can only be realised by achieving high level tasks such as path-planning and obstacle avoidance. This requires determining the pose (position and orientation) of the vehicle at all times. A minimal infrastructure localisation algorithm that has been developed for this purpose is outlined and the corresponding results are presented. Further research issues that are under investigation are also outlined briefly.
Resumo:
FRDC project 2008/306 Building economic capability to improve the management of marine resources in Australia was developed and approved in response to the widespread recognition and acknowledgement of the importance of incorporating economic considerations into marine management in Australia and of the persistent undersupply of suitably trained and qualified individuals capable of providing this input. The need to address this shortfall received broad based support and following widespread stakeholder consultation and building on previous unsuccessful State-based initiatives, a collaborative, cross-jurisdictional cross-institutional capability building model was developed. The resulting project sits within the People Development Program as part of FRDC’s ‘investment in RD&E to develop the capabilities of the people to whom the industry entrusts its future’, and has addressed its objectives largely through three core activities: 1. The Fisheries Economics Graduate Research Training Program which provides research training in fisheries/marine economics through enrolment in postgraduate higher degree studies at the three participating Universities; 2. The Fisheries Economics Professional Training Program which aims to improve the economic literacy of non-economist marine sector stakeholders and was implemented in collaboration with the Seafood Cooperative Research Centre through the Future Harvest Masterclass in Fisheries Economics; and, 3. The Australian Fisheries Economics Network (FishEcon) which aims to strengthen research in the area of fisheries economics by creating a forum in which fisheries economists, fisheries managers and Ph.D. students can share research ideas and results, as well as news of upcoming research opportunities and events. These activities were undertaken by a core Project team, comprising economic researchers and teachers from each of the four participating institutions (namely the University of Tasmania, the University of Adelaide, Queensland University of Technology and the Commonwealth Scientific and Industrial Research Organisation), spanning three States and the Commonwealth. The Project team reported to and was guided by a project Steering Committee. Commensurate with the long term nature of the project objectives and some of its activities the project was extended (without additional resources) in 2012 to 30th June 2015.
Resumo:
This paper presents aspects of a longitudinal study in the design and practice of Internet meetings between farmer their advisors and researchers in rural Australia. It reports on the use of Microsoft NetMeeting (NM) by a group of agricultural researchers from Australia's CSIRO (Commonwealth Scientific and Industrial Research Organisation) for regular meetings, over nine years, with farmers and the commercial advisers. It describes lessons drawn from this experience about the conditions under which telecollaborative tools, such as NM and video conferencing, are likely to be both useful and used.
Resumo:
This paper presents research that is being conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) with the aim of investigating the use of wireless sensor networks for automated livestock monitoring and control. It is difficult to achieve practical and reliable cattle monitoring with current conventional technologies due to challenges such as large grazing areas of cattle, long time periods of data sampling, and constantly varying physical environments. Wireless sensor networks bring a new level of possibilities into this area with the potential for greatly increased spatial and temporal resolution of measurement data. CSIRO has created a wireless sensor platform for animal behaviour monitoring where we are able to observe and collect information of animals without significantly interfering with them. Based on such monitoring information, we can identify each animal's behaviour and activities successfully
Resumo:
This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
The term “cloud computing” has emerged as a major ICT trend and has been acknowledged by respected industry survey organizations as a key technology and market development theme for the industry and ICT users in 2010. However, one of the major challenges that faces the cloud computing concept and its global acceptance is how to secure and protect the data and processes that are the property of the user. The security of the cloud computing environment is a new research area requiring further development by both the academic and industrial research communities. Today, there are many diverse and uncoordinated efforts underway to address security issues in cloud computing and, especially, the identity management issues. This paper introduces an architecture for a new approach to necessary “mutual protection” in the cloud computing environment, based upon a concept of mutual trust and the specification of definable profiles in vector matrix form. The architecture aims to achieve better, more generic and flexible authentication, authorization and control, based on a concept of mutuality, within that cloud computing environment.
Resumo:
Usability is a multi-dimensional characteristic of a computer system. This paper focuses on usability as a measurement of interaction between the user and the system. The research employs a task-oriented approach to evaluate the usability of a meta search engine. This engine encourages and accepts queries of unlimited size expressed in natural language. A variety of conventional metrics developed by academic and industrial research, including ISO standards,, are applied to the information retrieval process consisting of sequential tasks. Tasks range from formulating (long) queries to interpreting and retaining search results. Results of the evaluation and analysis of the operation log indicate that obtaining advanced search engine results can be accomplished simultaneously with enhancing the usability of the interactive process. In conclusion, we discuss implications for interactive information retrieval system design and directions for future usability research. © 2008 Academy Publisher.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
In this paper we introduce the idea of "social contraptions", which are interactive physical devices employed as designerly explorations of social relations as mediated by physical space and artefacts. We present two independent but related design explorations that were situated in fine art and industrial research contexts. We argue that these contraptions open up for exploration some interaction issues related to the theme of ’Embodied Facilitation'. This is particularly in relation to awareness and coordination between interactants as mediated by the spatial and material configuration of the contraptions. These methods, as well as the insights gained from them can contribute to the development of the emerging field of embodied interaction.
High performance liquid chromatography determined alkamide levels in Australian-grown Echinacea spp.
Resumo:
Extracts of Echinacea spp. are widely used as therapeutic immunostimulants with such activity being attributed in part to the alkamide fractions of these plants. Using high performance liquid chromatography, the levels of 8 alkamides, including 2 tetraene alkamides (dodeca-2E, 4E, 8Z, 10E/Z-tetraenoic acid isobutylamide), were quantitatively determined in 2 Australian-grown Echinacea spp. Overall, the levels of alkamides in Australian-grown E. angustifolia were found to be comparable with levels obtained in this study and other studies for USA and European Echinacea spp. However, results obtained for one sample of E. angustifolia suggested that it may have been mislabelled and that it was most likely a sample of E. pallida. Levels of tetraene alkamides in Australian-grown E. purpurea were also similar to, if not higher, than levels which have been reported for the same species grown in Germany and the USA. Preliminary studies on the stability of alkamide compounds in E. angustifolia indicated that they are susceptible to degradation, with a 13% loss of alkamide level over 2 months. Overall, results indicate that there is considerable potential to develop Echinacea as a viable crop in Australia.