743 resultados para Convergence Analysis
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
Total factor productivity plays an important role in the growth of the Indian economy. Using state-level data from 1993 to 2005 that were recently made available, we find widespread regional variation in productivity changes. In the years immediately following economic liberalization, productivity growth improved technical efficiency; however, in subsequent years, productivity growth was propelled by technological progress. We find a tendency toward convergence with regard to productivity growth among states; however, the states that were technically efficient when the economic reforms were instituted remained innovative in later years.
Resumo:
While economic theory acknowledges that some features of technology (e.g., indivisibilities, economies of scale and specialization) can fundamentally violate the traditional convexity assumption, almost all empirical studies accept the convexity property on faith. In this contribution, we apply two alternative flexible production technologies to measure total factor productivity growth and test the significance of the convexity axiom using a nonparametric test of closeness between unknown distributions. Based on unique field level data on the petroleum industry, the empirical results reveal significant differences, indicating that this production technology is most likely non-convex. Furthermore, we also show the impact of convexity on answers to traditional convergence questions in the productivity growth literature.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This research paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place of residents, workers and visitors. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
In what follows, I put forward an argument for an analytical method for social science that operates at the level of genre. I argue that generic convergence, generic hybridity, and generic instability provide us with a powerful perspectives on changes in political, cultural, and economic relationships, most specifically at the level of institutions. Such a perspective can help us identify the transitional elements, relationships, and trajectories that define the place of our current system in history, thereby grounding our understanding of possible futures.1 In historically contextualising our present with this method, my concern is to indicate possibilities for the future. Systemic contradictions indicate possibility spaces within which systemic change must and will emerge. We live in a system currently dominated by many fully-expressed contradictions, and so in the presence of many possible futures. The contradictions of the current age are expressed most overtly in the public genres of power politics. Contemporary public policy—indeed politics in general-is an excellent focus for any investigation of possible futures, precisely because of its future-oriented function. It is overtly hortatory; it is designed ‘to get people to do things’ (Muntigl in press: 147). There is no point in trying to get people to do things in the past. Consequently, policy discourse is inherently oriented towards creating some future state of affairs (Graham in press), along with concomitant ways of being, knowing, representing, and acting (Fairclough 2000).
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Resumo:
Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century helped improve urban infrastructure management and influenced quality of life. Telecommunication technologies make it possible for people to deliver text, audio and video material using wired, wireless or fibre-optic networks. Technologies convergence amongst these digital devices continues to create new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones. This chapter discusses the recent developments in telecommunication networks and trends in convergence technologies, their implications for urban infrastructure planning, and for the quality of life of urban residents.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities