88 resultados para Conservation of natural resources.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The statutory arrangements for the management of natural resources in Australia confer powers of decision-making upon government agencies and, at the same time, restrict how these powers are to be exercised by reference either to stated criteria or in some instances to the public interest. These restrictions perform different functions according to their structure, form and language: for example they may be in the form of jurisdictional, deliberative or purposive rules. This article reviews how the offshore resources legislation of the Commonwealth and some examples of the onshore resources legislation of Queensland address the functions performed by the public interest in determining whether there is compliance with the principle of the rule of law.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species. © 2010 by the Ecological Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget-limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator-prey model based on a Lotka-Volterra system to investigate the cost-effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed-number control), removal of a constant proportion of predators (fixed-rate control), removal of predators that exceed a predetermined threshold (upper-trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower-trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed-number, and lower-trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper-trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper-trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the "best" strategy when financial resources are limited and eradication is unlikely. © 2008 Society for Conservation Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moose populations are managed for sustainable yield balanced against costs caused by damage to forestry or agriculture and collisions with vehicles. Optimal harvests can be calculated based on a structured population model driven by data on abundance and the composition of bulls, cows, and calves obtained by aerial-survey monitoring during winter. Quotas are established by the respective government agency and licenses are issued to hunters to harvest an animal of specified age or sex during the following autumn. Because the cost of aerial monitoring is high, we use a Management Strategy Evaluation to evaluate the costs and benefits of periodic aerial surveys in the context of moose management. Our on-the-fly "seat of your pants" alternative to independent monitoring is management based solely on the kill of moose by hunters, which is usually sufficient to alert the manager to declines in moose abundance that warrant adjustments to harvest strategies. Harvests are relatively cheap to monitor; therefore, data can be obtained each year facilitating annual adjustments to quotas. Other sources of "cheap" monitoring data such as records of the number of moose seen by hunters while hunting also might be obtained, and may provide further useful insight into population abundance, structure and health. Because conservation dollars are usually limited, the high cost of aerial surveys is difficult to justify when alternative methods exist. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species. © 2008 Society for Conservation Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost 10 years ago, Pullin and Knight (2001) called for an “effectiveness revolution in conservation” to be enabled by the systematic evaluation of evidence for conservation decision making. Drawing from the model used in clinicalmedicine, they outlined the concept of “evidencebased conservation” in which existing information, or evidence, from relevant and rigorous research is compiled and analyzed in a systematic manner to inform conservation actions (Cochrane 1972). The promise of evidencebased conservation has generated significant interest; 25 systematic reviews have been completed since 2004 and dozens are underway (Collaboration for Environmental Evidence 2010). However we argue that an “effectiveness revolution” (Pullin & Knight 2001) in conservation will not be possible unless mechanisms are devised for incorporating the growing evidence base into decision frameworks. For conservation professionals to accomplish the missions of their organizations they must demonstrate that their actions actually achieve objectives (Pullin & Knight 2009). Systematic evaluation provides a framework for objectively evaluating the effectiveness of actions. To leverage the benefit of these evaluations, we need resource-allocation systems that are responsive to their outcomes. The allocation of conservation resources is often the product of institutional priorities or reliance on intuition (Sutherland et al. 2004; Pullin & Knight 2005; Cook et al. 2010). We highlight the NICE technologyappraisal process because it provides an example of formal integration of systematic-evidence evaluation with provision of guidance for action. The transparent process, which clearly delineates costs and benefits of each alternative action, could also provide the public with new insight into the environmental effects of different decisions. This insight could stimulate a wider discussion about investment in conservation by demonstrating how changes in funding might affect the probability of achieving conservation objectives. ©2010 Society for Conservation Biology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2010 biodiversity target agreed by signatories to the Convention on Biological Diversity directed the attention of conservation professionals toward the development of indicators with which to measure changes in biological diversity at the global scale. We considered why global biodiversity indicators are needed, what characteristics successful global indicators have, and how existing indicators perform. Because monitoring could absorb a large proportion of funds available for conservation, we believe indicators should be linked explicitly to monitoring objectives and decisions about which monitoring schemes deserve funding should be informed by predictions of the value of such schemes to decision making. We suggest that raising awareness among the public and policy makers, auditing management actions, and informing policy choices are the most important global monitoring objectives. Using four well-developed indicators of biological diversity (extent of forests, coverage of protected areas, Living Planet Index, Red List Index) as examples, we analyzed the characteristics needed for indicators to meet these objectives. We recommend that conservation professionals improve on existing indicators by eliminating spatial biases in data availability, fill gaps in information about ecosystems other than forests, and improve understanding of the way indicators respond to policy changes. Monitoring is not an end in itself, and we believe it is vital that the ultimate objectives of global monitoring of biological diversity inform development of new indicators. ©2010 Society for Conservation Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter. © 2006 Blackwell Publishing Ltd/CNRS.