102 resultados para Blue laser recording
Resumo:
Objective Laser Doppler imaging (LDI) was compared to wound outcomes in children's burns, to determine if the technology could be used to predict these outcomes. Methods Forty-eight patients with a total of 85 burns were included in the study. Patient median age was 4 years 10 months and scans were taken 0–186 h post-burn using the fast, low-resolution setting on the Moor LDI2 laser Doppler imager. Wounds were managed by standard practice, without taking into account the scan results. Time until complete re-epithelialisation and whether or not grafting and scar management were required were recorded for each wound. If wounds were treated with Silvazine™ or Acticoat™ prior to the scan, this was also recorded. Results The predominant colour of the scan was found to be significantly related to the re-epithelialisation, grafting and scar management outcomes and could be used to predict those outcomes. The prior use of Acticoat™ did not affect the scan relationship to outcomes, however, the use of Silvazine™ did complicate the relationship for light blue and green scanned partial thickness wounds. Scans taken within the 24-h window after-burn also appeared to be accurate predictors of wound outcome. Conclusion Laser Doppler imaging is accurate and effective in a paediatric population with a low-resolution fast-scan.
Resumo:
Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.
Resumo:
This paper assesses and compares the performances of two daylight collection strategies, one passive and one active, for large-scale mirrored light pipes (MLP) illuminating deep plan buildings. Both strategies use laser cut panels (LCP) as the main component of the collection system. The passive system comprises LCPs in pyramid form, whereas the active system uses a tiled LCP on a simple rotation mechanism that rotates 360° in 24 hours. Performance is assessed using scale model testing under sunny sky conditions and mathematical modelling. Results show average illuminance levels for the pyramid LCP ranging from 50 to 250 lux and 150 to 200 lux for the rotating LCPs. Both systems improve the performance of a MLP. The pyramid LCP increases the performance of a MLP by 2.5 times and the rotating LCP by 5 times, when compared to an open pipe particularly for low sun elevation angles.
Resumo:
For the 1.5 million travellers who annually visit the Blue Mountains to experience the Australian Bush, it just got closer. The Echo Point redevelopment by Tract Consultants is a megastructure in the void.
Resumo:
In this work, natural palygorskite impregnated with zero-valent iron (ZVI) was prepared and characterised. The combination of ZVI particles on surface of fibrous palygorskite can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. There is a significant increase of methylene blue (MB) decolourized efficiency on acid treated palygorskite with ZVI grafted, within 5 mins, the concentration of MB in the solution was decreased from 94 mg/L to around 20 mg/L and the equilibration was reached at about 30 to 60 mins with only around 10 mg/L MB remained in solution. Changes in the surface and structure of prepared materials were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, surface analysing and scanning electron microscopy (SEM) with element analysis and mapping. Comparing with zero-valent iron and palygorskite, the presence of zero-valent iron reactive species on the palygorskite surface strongly increases the decolourization capacity for methylene blue, and it is significant for providing novel modified clay catalyst materials for the removal of organic contaminants from waste water.
Resumo:
Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.