279 resultados para Average city
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
This paper describes the socio-economic and environmental impacts of battery driven Auto Rickshaw at Rajshahi city in Bangladesh. Unemployment problem is one of the major problems in Bangladesh. The number of unemployed people in Bangladesh is 7 lacks. Auto Rickshaw reduces this unemployment problem near about 2%.In this thesis work various questions were asked to the Auto Rickshaw driver in the different point in the Rajshahi city. Then those data were calculated to know their socio economic condition. The average number of passenger per Auto Rickshaw was determined at various places of Rajshahi city (Talaimari mor, Hadir mor, Alupotti, Shaheb bazar zero point, Shodor Hospital mor, Fire brigade mor, CNB mor, Lakshipur mor, Bondo gate, Bornali, Panir tank, Rail gate, Rail Station, Bhodrar mor, Adorsha School mor). Air pollution is a great threat for human health. One of the major causes of the air pollution is the emission from various vehicles, which are running by the burning of the fossil fuel in different internal combustion(IC) engines. All the data’s about emission from various power plants were collected from internet. Then the amounts of emission (CO2, NOX and PM) from different power plant were calculated in terms of kg/km. The energy required by the Auto Rickshaw per km was also calculated. Then the histogram of emission from different vehicles in terms of kg/km was drawn. By analyzing the data and chart, it was found that, battery driven Auto Rickshaw increases income, social status, comfort and decreases unemployment problems.
Resumo:
Most studies examining the temperature–mortality association in a city used temperatures from one site or the average from a network of sites. This may cause measurement error as temperature varies across a city due to effects such as urban heat islands. We examined whether spatiotemporal models using spatially resolved temperatures produced different associations between temperature and mortality compared with time series models that used non-spatial temperatures. We obtained daily mortality data in 163 areas across Brisbane city, Australia from 2000 to 2004. We used ordinary kriging to interpolate spatial temperature variation across the city based on 19 monitoring sites. We used a spatiotemporal model to examine the impact of spatially resolved temperatures on mortality. Also, we used a time series model to examine non-spatial temperatures using a single site and the average temperature from three sites. We used squared Pearson scaled residuals to compare model fit. We found that kriged temperatures were consistent with observed temperatures. Spatiotemporal models using kriged temperature data yielded slightly better model fit than time series models using a single site or the average of three sites' data. Despite this better fit, spatiotemporal and time series models produced similar associations between temperature and mortality. In conclusion, time series models using non-spatial temperatures were equally good at estimating the city-wide association between temperature and mortality as spatiotemporal models.
Resumo:
Purpose This study aimed to objectively measure the physical activity (PA) characteristics of a racially and ethnically diverse sample of inner-city elementary schoolchildren and to examine the influence of sex, race/ethnicity, grade level, and weight status on PA. Methods A total of 470 students in grades 4-6 from six inner-city schools in Philadelphia wore an ActiGraph GT3X+ accelerometer (Actigraph, Pensacola, FL) for up to 7 d. The resultant data were uploaded to a customized Visual Basic EXCEL macro to determine the time spent in sedentary (SED), light-intensity PA (LPA), and moderate- to vigorous-intensity PA (MVPA). Results On average, students accumulated 48 min of MVPA daily. Expressed as a percentage of monitoring time, students were sedentary for 63% of the time, in LPA 31% of the time, and in MVPA 6% of the time. Across all race/ethnicity and grade level groups, boys exhibited significantly higher levels of MVPA than girls did; fifth-grade boys exhibited significantly lower MVPA levels than fourth-and sixth-grade boys did, and sixth-grade girls exhibited significantly lower MVPA levels than fourth-and fifth-grade girls did. Hispanic children exhibited lower levels of MVPA than children from other racial/ethnic groups did, and overweight and obese children exhibited significantly lower MVPA levels than children in the healthy weight range did. Across the entire sample, only 24.3% met the current public health guidelines for PA. Physical inactivity was significantly greater among females, Hispanics, and overweight and obese students. Conclusions Fewer than one in four inner-city schoolchildren accumulated the recommended 60 min of MVPA daily. These findings highlight the need for effective and sustainable programs to promote PA in inner-city youth.
Resumo:
Structural reform through forced mergers has been a dominant feature of Australian local government for decades. Advocates of compulsory consolidation contend that larger municipalities perform better across a wide range of attributes, including financial sustainability. While empirical scholars of local government have invested considerable effort into investigating these claims, no-one has yet examined the performance of Brisbane City Council against other local authorities, despite the fact that it is by far the largest council in Australia. This paper seeks to remedy this neglect by comparing Brisbane with Sydney City Council, an average of six south east Queensland councils and an average of ten metropolitan New South Wales councils against four measures of financial performance over the period 2008 to 2011.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm–1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm–1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm–1 with a shoulder at 1127 cm–1 and minor bands at 1045 and 1102 cm–1. In the region 650–800 cm–1 bands are observed at 679, 753 and 791 cm–1 with a minor band around 694 cm–1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm–1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm–1 band is a Li–O deformation mode while the 456, 551 and 565 cm–1 bands are Al–O deformation modes.
Resumo:
Traffic emissions are an important contributor to ambient air pollution, especially in large cities featuring extensive and high density traffic networks. Bus fleets represent a significant part of inner city traffic causing an increase in exposure to general public, passengers and drivers along bus routes and at bus stations. Limited information is available on quantification of the levels, and governing parameters affecting the air pollution exposure at bus stations. The presented study investigated the bus emissions-dominated ambient air in a large, inner city bus station, with a specific focus on submicrometer particles. The study’s objectives were (i) quantification of the concentration levels; (ii) characterisation of the spatio-temporal variation; (iii) identification of the parameters governing the emissions levels at the bus station and (iv) assessment of the relationship between particle concentrations measured at the street level (background) and within the bus station. The results show that up to 90% of the emissions at the station are ultrafine particles (smaller than 100 nm), with the concentration levels up to 10 times the value of urban ambient air background (annual) and up to 4 times the local ambient air background. The governing parameters affecting particle concentration at the station were bus flow rate and meteorological conditions (wind velocity). Particle concentration followed a diurnal trend, with an increase in the morning and evening, associated with traffic rush hours. Passengers’ exposure could be significant compared to the average outdoor and indoor exposure levels.