240 resultados para Aircraft exhaust emissions.
Resumo:
In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.
Resumo:
A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].
Resumo:
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines is ultimately coupled to the structure of fuel molecules. The presence of oxygen, level of unsaturation and the carbon chain length of respective molecules influence the combustion chemistry. It is speculated that increased oxygen content in the fuel may lead to the increased oxidative potential (Stevanovic, S. 2013). Also, upon the exposure to UV and ozone in the atmosphere, the chemical composition of the exhaust is changed. The presence of an oxidant and UV is triggering the cascade of photochemical reactions as well as the partitioning of semi-volatile compounds between the gas and particle phase. To gain an insight into the relationship between the molecular structures of the esters, their volatile organic content and the potential toxicity of diesel exhaust particulate matter, measurements were conducted on a modern common rail diesel engine. This research also investigates the contribution of atmospheric conditions on the transfer of semi-volatile fraction of diesel exhaust from the gas phase to the particle phase and the extent to which semi-volatile compounds (SVOCs) are related to the oxidative potential, expressed through the concentration of reactive oxygen species (ROS) (Stevanovic, S. 2013)...
Resumo:
Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.
Resumo:
Biodiesel is a renewable fuel that has been shown to reduce many exhaust emissions, except oxides of nitrogen (NOx), in diesel engine cars. This is of special concern in inner urban areas that are subject to strict environmental regulations, such as EURO norms. Also, the use of pure biodiesel (B100) is inhibited because of its higher NOx emissions compared to petroleum diesel fuel. The aim of this present work is to investigate the effect of the iodine value and cetane number of various biodiesel fuels obtained from different feed stocks on the combustion and NOx emission characteristics of a direct injection (DI) diesel engine. The biodiesel fuels were chosen from various feed stocks such as coconut, palm kernel, mahua (Madhuca indica), pongamia pinnata, jatropha curcas, rice bran, and sesame seed oils. The experimental results show an approximately linear relationship between iodine value and NOx emissions. The biodiesels obtained from coconut and palm kernel showed lower NOx levels than diesel, but other biodiesels showed an increase in NOx. It was observed that the nature of the fatty acids of the biodiesel fuels had a significant influence on the NOx emissions. Also, the cetane numbers of the biodiesel fuels are affected both premixed combustion and the combustion rate, which further affected the amount of NOx formation. It was concluded that NOx emissions are influenced by many parameters of biodiesel fuels, particularly the iodine value and cetane number.
Resumo:
House dust is a heterogeneous matrix, which contains a number of biological materials and particulate matter gathered from several sources. It is the accumulation of a number of semi-volatile and non-volatile contaminants. The contaminants are trapped and preserved. Therefore, house dust can be viewed as an archive of both the indoor and outdoor air pollution. There is evidence to show that on average, people tend to stay indoors most of the time and this increases exposure to house dust. The aims of this investigation were to: " assess the levels of Polycyclic Aromatic Hydrocarbons (PAHs), elements and pesticides in the indoor environment of the Brisbane area; " identify and characterise the possible sources of elemental constituents (inorganic elements), PAHs and pesticides by means of Positive Matrix Factorisation (PMF); and " establish the correlations between the levels of indoor air pollutants (PAHs, elements and pesticides) with the external and internal characteristics or attributes of the buildings and indoor activities by means of multivariate data analysis techniques. The dust samples were collected during the period of 2005-2007 from homes located in different suburbs of Brisbane, Ipswich and Toowoomba, in South East Queensland, Australia. A vacuum cleaner fitted with a paper bag was used as a sampler for collecting the house dust. A survey questionnaire was filled by the house residents which contained information about the indoor and outdoor characteristics of their residences. House dust samples were analysed for three different pollutants: Pesticides, Elements and PAHs. The analyses were carried-out for samples of particle size less than 250 µm. The chemical analyses for both pesticides and PAHs were performed using a Gas Chromatography Mass Spectrometry (GC-MS), while elemental analysis was carried-out by using Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS). The data was subjected to multivariate data analysis techniques such as multi-criteria decision-making procedures, Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), coupled with Geometrical Analysis for Interactive Aid (GAIA) in order to rank the samples and to examine data display. This study showed that compared to the results from previous works, which were carried-out in Australia and overseas, the concentrations of pollutants in house dusts in Brisbane and the surrounding areas were relatively very high. The results of this work also showed significant correlations between some of the physical parameters (types of building material, floor level, distance from industrial areas and major road, and smoking) and the concentrations of pollutants. Types of building materials and the age of houses were found to be two of the primary factors that affect the concentrations of pesticides and elements in house dust. The concentrations of these two types of pollutant appear to be higher in old houses (timber houses) than in the brick ones. In contrast, the concentrations of PAHs were noticed to be higher in brick houses than in the timber ones. Other factors such as floor level, and distance from the main street and industrial area, also affected the concentrations of pollutants in the house dust samples. To apportion the sources and to understand mechanisms of pollutants, Positive Matrix Factorisation (PMF) receptor model was applied. The results showed that there were significant correlations between the degree of concentration of contaminants in house dust and the physical characteristics of houses, such as the age and the type of the house, the distance from the main road and industrial areas, and smoking. Sources of pollutants were identified. For PAHs, the sources were cooking activities, vehicle emissions, smoking, oil fumes, natural gas combustion and traces of diesel exhaust emissions; for pesticides the sources were application of pesticides for controlling termites in buildings and fences, treating indoor furniture and in gardens for controlling pests attacking horticultural and ornamental plants; for elements the sources were soil, cooking, smoking, paints, pesticides, combustion of motor fuels, residual fuel oil, motor vehicle emissions, wearing down of brake linings and industrial activities.
Resumo:
The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the southern hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm hr-1 (ranged from 1.79 – 7.78 nm hr-1). Case studies of the nucleation burst events were characterised including i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.
Resumo:
The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.