197 resultados para Acute Kidney Injury
Resumo:
Introduction Critical care patients frequently receive blood transfusions. Some reports show an association between aged or stored blood and increased morbidity and mortality, including the development of transfusion-related acute lung injury (TRALI). However, the existence of conflicting data endorses the need for research to either reject this association, or to confirm it and elucidate the underlying mechanisms. Methods Twenty-eight sheep were randomised into two groups, receiving saline or lipopolysaccharide (LPS). Sheep were further randomised to also receive transfusion of pooled and heat-inactivated supernatant from fresh (Day 1) or stored (Day 42) non-leucoreduced human packed red blood cells (PRBC) or an infusion of saline. TRALI was defined by hypoxaemia during or within two hours of transfusion and histological evidence of pulmonary oedema. Regression modelling compared physiology between groups, and to a previous study, using stored platelet concentrates (PLT). Samples of the transfused blood products also underwent cytokine array and biochemical analyses, and their neutrophil priming ability was measured in vitro. Results TRALI did not develop in sheep that first received saline-infusion. In contrast, 80% of sheep that first received LPS-infusion developed TRALI following transfusion with "stored PRBC." The decreased mean arterial pressure and cardiac output as well as increased central venous pressure and body temperature were more severe for TRALI induced by "stored PRBC" than by "stored PLT." Storage-related accumulation of several factors was demonstrated in both "stored PRBC" and "stored PLT", and was associated with increased in vitro neutrophil priming. Concentrations of several factors were higher in the "stored PRBC" than in the "stored PLT," however, there was no difference to neutrophil priming in vitro. Conclusions In this in vivo ovine model, both recipient and blood product factors contributed to the development of TRALI. Sick (LPS infused) sheep rather than healthy (saline infused) sheep predominantly developed TRALI when transfused with supernatant from stored but not fresh PRBC. "Stored PRBC" induced a more severe injury than "stored PLT" and had a different storage lesion profile, suggesting that these outcomes may be associated with storage lesion factors unique to each blood product type. Therefore, the transfusion of fresh rather than stored PRBC may minimise the risk of TRALI.
Resumo:
Aim/Background: Transfusion-related acute lung injury (TRALI) is a potentially fatal adverse transfusion reaction. It is hypothesised to occur via a two-insult mechanism: the recipient’s underlying co-morbidity in addition to the transfusion of blood products activate neutrophils in the lung resulting in damaged endothelium and capillary leakage. Neutrophil activation may occur by antibody or non-antibody related mechanisms, with the length of storage of cellular blood products implicated in the latter. This study investigated non-antibody mediated priming and/or activation of neutrophil oxidative burst. Methods: A cytochrome C reduction assay was used to assess priming and activation of neutrophil oxidative burst by pooled supernatant (SN) from day 1 (D1; n=75) and day 42 (D42; n=113) packed red blood cells (PRBC). Pooled PRBC-SN were assessed in parallel with PAF (priming), fMLP (activating), PAF + fMLP (priming + activating) and buffer only (negative) controls. Cytochrome C reduction was measured over 30min at 37oC (inclusive of 10min priming). Neutrophil activation by PRBC-SN was assessed cf. buffer only and neutrophil priming by PRBC-SN was assessed by co-incubation with fMLP cf. fMLP alone. One-way ANOVA; Newman-Keuls post-test; p<0.05; n=10 independent assays. Results: Neither D1- nor D42- PRBC-SN alone activated neutrophil oxidative burst. In addition, D1-PRBC-SN did not prime fMLP-activated neutrophil oxidative burst. D42-PRBC-SN did, however, prime neutrophils for subsequent activation of oxidative burst by fMLP, the magnitude of response being similar to PAF (a known neutrophil priming agonist). Conclusion: These findings are consistent with the two-insult mechanism of TRALI. Factors released into the SN during PRBC storage contributed to neutrophil priming synergistically with other neutrophil stimulating agonists. This implicates PRBC storage duration as a key factor contributing to non-immune neutrophil activation in the development of TRALI in patients with pre-disposing inflammatory conditions.
Resumo:
Aim/Background
TRALI is hypothesised to develop via a two-event mechanism involving both the patieint's underlying morbidity and blood product factors. The storage of cellular products has been implicated in cases of non-antibody mediated TRALI, however the pathophysiological mechanisms are undefined. We investigated blood product storage-related modulation of inflmmatory cells and medicators involved in TRALI.
Methods
In an in vitro mode, fresh human whole blood was mixed with culture media (control) or LPS as a 1st event and "transfused" with 10% (v/v) pooled supernatant (SN) from Day 1 (d1, n=75) or Day 42 (D42, n=113) packed red blood cells (PRBCs) as a 2nd event. Following 6hrs, culture SN was used to assess the overall inflammatory response (cytometric bead array) and a duplicate assay containing protein transport inhibitor was used to assess neutrophil- and monocyte-specific inflmamatory responses using multi-colour flow cytometry. Panels: IL-6, IL-8, IL-10, IL-12, IL-1, TNF, MCP-1, IP-10, MIP-1. One-way ANOVA 95% CI.
Results
In the absence of LPS, exposure to D1 or D42 PRBC-SN reduced monocyte expression of IL-6, IL-8 and Il-10. D42 PRBC-SN also reduced monocyte IP-10, and the overall IL-8 production was increased. In the presence of LPS, D1-PRBC SN only modified overall IP-10 levels which were reduced. However, cf LPS alone, the combination of LPS and D42 PRBC-SN resulted in increased neutrophil and monocyte productionof IL-1 and IL-8 as well as reduced monocyte TNF production. Additionally, LPS and D42 PRBC-SN resulted in overall inflmmatory changes: elevated IL-8,
Resumo:
BACKGROUND Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. AIM To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. METHODS Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. RESULTS Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2U/ml higher (p<0.001) at 10min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). CONCLUSION Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost.
Resumo:
For the past decade, an attempt has been made by many research groups to define the roles of the growing number of Bcl-2 gene family proteins in the apoptotic process. The Bcl-2 family consists of pro-apoptotic (or cell death) and anti-apoptotic (or cell survival) genes and it is the balance in expression between these gene lineages that may determine the death or survival of a cell. The majority of studies have analysed the role/s of the Bcl-2 genes in cancer development. Equally important is their role in normal tissue development, homeostasis and non-cancer disease states. Bcl-2 is crucial for normal development in the kidney, with a deficiency in Bcl-2 producing such malformation that renal failure and death result. As a corollary, its role in renal disease states in the adult has been sought. Ischaemia is one of the most common causes of both acute and chronic renal failure. The section of the kidney that is most susceptible to ischaemic damage is the outer zone of the outer medulla. Within this zone the proximal tubules are most sensitive and often die by necrosis or desquamate. In the distal nephron, apoptosis is the more common form of cell death. Recent results from our laboratory have indicated that ischaemia-induced acute renal failure is associated with up-regulation of two anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) in the damaged distal tubule and occasional up-regulation of Bax in the proximal tubule. The distal tubule is a known reservoir for several growth factors important to renal growth and repair, such as insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). One of the likely possibilities for the anti-cell death action of the Bcl-2 genes is that the protected distal cells may be able to produce growth factors that have a further reparative or protective role via an autocrine mechanism in the distal segment and a paracrine mechanism in the proximal cells. Both EGF and IGF-1 are also up-regulated in the surviving distal tubules and are detected in the surviving proximal tubules, where these growth factors are not usually synthesized. As a result, we have been using in vitro methods to test: (i) the relative sensitivities of renal distal and proximal epithelial cell populations to injury caused by mechanisms known to act in ischaemia-reperfusion; (ii) whether a Bcl-2 anti-apoptotic mechanism acts in these cells; and (iii) whether an autocrine and/or paracrine growth factor mechanism is initiated. The following review discusses the background to these studies as well as some of our preliminary results.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.
Resumo:
Transfusion-related acute lung injury (TRALI) has been the leading cause of transfusion-related morbidity and mortality in the UK and the USA in recent years. A threshold mechanism of TRALI has been proposed in which both patient factors (type and/or severity of clinical insult) and blood product factors (strength and/or concentration of antibodies or biological response modifiers) interact to surpass a threshold for TRALI development (Bux et al. Br J Haematol; 2007; 136: 788-99). The risk of developing antibody-mediated TRALI has been minimised by the introduction of risk-reduction strategies such as limiting the use of plasma from female donors. In contrast, there are no strategies currently in place to mitigate the development of non-antibody mediated TRALI as the mechanisms remain largely undefined. Previous studies have implicated non-polar lipids such as arachidonic acid and various species of hydroxyeicosatetranoic acid (HETE) in the development of non-antibody mediated TRALI (Silliman et al. Transfusion; 2011; 51: 2549-54), however the contribution of these lipids to the development of an inflammatory response in TRALI is poorly understood.
Resumo:
Genitourinary (GU) problems are a common complaint in the community and to the emergency department (ED). Urinary tract infections (UTIs) are the second most common bacterial disease. UTIs rank as the sixteenth most frequently reported problem to general practitioners in Australia1 and between 10% and 20% of women will experience at least one UTI in their lifetime. Over 1,000,000 Australians are currently suffering with nephrolithiasis (renal calculi) and it is hy-pothesised that Australia’s hot, dry climate causes more stone formation than many other coun-tries in the world. Acute kidney injury (AKI) is a common complication of any trauma. Hypovol-aemia results in severe hypotension and this precipitates the development of acute tubular necrosis and subsequent AKI. The incidence of chronic kidney disease (CKD) is rising across the world. CKD is classified into five stages with those in stage 5 being classified as being in end stage kidney disease (ESKD). It is estimated that there are over 1.5 million people in Australia with CKD and there were over 16,000 Australians and over 2900 individuals in New Zealand with ESKD.2 Indigenous populations from both countries (Aboriginals, Torres Strait Islanders, Maoris, and Pacific Islanders) are over-represented in the number of people with all stages of CKD in both countries. Patients with compromised renal function often require the assistance of paramedics and will arrive at the ED with life-threatening fluid and electrolyte imbalances. Spe-cific GU emergencies discussed in this chapter are acute renal failure, rhabdomyolysis, chronic kidney disease, UTIs, acute urinary retention, urinary calculi, testicular torsion, epididymitis, and priapism. Refer to Chapter 31 for discussion of sexually transmitted infections (STIs) in women and to Chapter X for discussion of genitourinary trauma.
Resumo:
Purpose: To measure renal adenosine triphosphate (ATP) (bioenergetics) during hypotensive sepsis with or without angiotensin II (Ang II) infusion. Methods: In anaesthetised sheep implanted with a renal artery flow probe and a magnetic resonance coil around one kidney, we induced hypotensive sepsis with intravenous Escherichia coli injection. We measured mean arterial pressure (MAP), heart rate, renal blood flow RBF and renal ATP levels using magnetic resonance spectroscopy. After 2 h of sepsis, we randomly assigned sheep to receive an infusion of Ang II or vehicle intravenously and studied the effect of treatment on the same variables. Results: After E. coli administration, the experimental animals developed hypotensive sepsis (MAP from 92 ± 9 at baseline to 58 ± 4 mmHg at 4 h). Initially, RBF increased, then, after 4 h, it decreased below control levels (from 175 ± 28 at baseline to 138 ± 27 mL/min). Despite decreased RBF and hypotension, renal ATP was unchanged (total ATP to inorganic phosphate ratio from 0.69 ± 0.02 to 0.70 ± 0.02). Ang II infusion restored MAP but caused significant renal vasoconstriction. However, it induced no changes in renal ATP (total ATP to inorganic phosphate ratio from 0.79 ± 0.03 to 0.80 ± 0.02). Conclusions:During early hypotensive experimental Gram-negative sepsis, there was no evidence of renal bioenergetic failure despite decreased RBF. In this setting, the addition of a powerful renal vasoconstrictor does not lead to deterioration in renal bioenergetics.
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
Musculoskeletal injuries are the most common reason for operative procedures in severely injured patients and are major determinants of functional outcomes. In this paper, we summarise advances and future directions for management of multiply injured patients with major musculoskeletal trauma. Improved understanding of fracture healing has created new possibilities for management of particularly challenging problems, such as delayed union and non union of fractures and large bone defects. Optimum timing of major orthopaedic interventions is guided by increased knowledge about the immune response after injury. Individual treatment should be guided by trading off the benefits of early definitive skeletal stabilisation, and the potentially life-threatening risks of systemic complications such as fat embolism, acute lung injury, and multiple organ failure. New methods for measurement of fracture healing and function and quality of life outcomes pave the way for landmark trials that will guide the future management of musculoskeletal injuries.
Resumo:
Background: Extracorporeal circulation (ECC), the diversion of blood flow through a circuit located outside of the body, has been one of the major advances in modern medicine. Cardio-pulmonary bypass (CPB), renal dialysis, apheresis and extracorporeal membrane oxygenation (ECMO) are all different forms of ECC. Despite its major benefits, when blood comes into contact with foreign material, both the coagulation and inflammation cascades are activated simultaneously. Short periods of exposure to ECC e.g. CPB (�2 h duration), are known to be associated with haemolysis, coagulopathies, bleeding and inflammation which demand blood product support. Therefore, it is not unexpected that these complications would be exaggerated with prolonged periods of ECC such as in ECMO (days to weeks duration). The variability and complexities of the underlying pathologies of patients requiring ECC makes it difficult to study the cause and effect of these complications. To overcome this problem we developed an ovine (sheep) model of ECC. Method: Healthy female sheep (1–3 y.o.) weighing 40–50 kg were fasted overnight, anaesthetised, intubated and ventilated [1]. Half the group received smoke induced acute lung injury (S-ALI group) (n = 8) and the other half did not (healthy group) (n = 8). Sheep were subsequently cannulated (Medtronic Inc, Minneapolis, MN, USA) and veno-venous ECMO commenced using PLS ECMO circuit and Quadrox D oxygenator (Maquet Cardiopulmonary AG, Hechinger Straße, Germany). There was continuous physiological monitoring and blood was collected at specified time intervals for full blood counts, platelet function analysis (by Multiplate®), routine coagulation and assessment of clot formation and lysis (by ROTEM®). Preliminary results Full blood counts and routine coagulation results from normal healthy sheep were comparable to those of normal human adults. Within 15 min of initiating of ECMO, PT, PTT and EXTEM clot formation time increased, whilst EXTEM maximum clot firmness decreased in both cohorts. Discussion & Conclusions: Preliminary results of sheep from both 2 h ECMO cohorts showed that the anatomy, haematology and coagulation parameters of an adult sheep are comparable to that a human adult. Experiments are currently underway with healthy (n = 8) and S-ALI (n = 8) sheep on ECMO for 24 h. In addition to characterising how ECMO alters haematology and coagulation parameters, we hope that it will also define which blood components will be most effective to correct bleeding or clotting complications during ECMO support.