92 resultados para 091210 Timber Pulp and Paper
Resumo:
The effect of bentonite micro-particles and cationic polyacrylamide (CPAM) on the filtration properties of bagasse pulp was investigated under shearing conditions. CPAM improves retention but the bentonite addition level must be optimised for further improvements in retention. A Dynamic Drainage Jar (‘Britt Jar’) was modified to allow bagasse pulp slurry to be subjected to vacuum allowing a thin pulp pad to be formed. Bagasse pulp which had had the majority of the fine fibre removed prior to pulping drained more quickly than a conventional bagasse pulp when vacuum was not applied, however this situation was reversed when vacuum was used. The flocculants continue to improve fibre retention under vacuum and shear conditions but with reduced effectiveness.
Resumo:
Despite the large quantity of sugarcane grown in Australia, no bagasse is pulped in the country. This is largely because of an established pulp industry based on the abundant native hardwood resources. However, increasing demand for fibre and the limited availability of additional forest areas make bagasse pulping attractive. Issues relating to infrastructure and economics are discussed, and scenarios of acceptable risk identified. It is shown that there should be scope for the production of bleached bagasse pulp in Australia.
Resumo:
This study examined the effect of flocculants on the filtration parameters of bagasse pulp. In the first phase, flocculants were effective for improving the fiber retention of three different bagasse pulp slurries, based on flocculant system studies using a dynamic drainage jar. In the second phase, pulp pads were formed using these flocculants and the steady-state permeability and compressibility parameters were measured. The results showed that the flocculant system that was effective for a pulp slurry was entirely ineffective in improving pulp pad permeability or compressibility during the second experimental phase for two of the bagasse pulp samples.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.
Resumo:
The pulp and paper industry is very large and is now well in excess of $200 billion (FAO 2009). Estimates for the amount of bagasse used in the production of pulp and paper products vary but the general consensus is that it accounts for 2–5% of global production, making it one of the highest revenue earners for the global sugarcane industry.
Resumo:
SRI has examined the organosolv (organic solvation) pulping of Australian bagasse using technology supplied by Ecopulp. In the process, bagasse is reacted with aqueous ethanol in a digester at elevated temperatures (between 150ºC and 200ºC). The products from the digester are separated using proprietary technology before further processing into a range of saleable products. Test trials were undertaken using two batch digesters; the first capable of pulping about 25 g of wet depithed bagasse and the second, larger samples of about 1.5 kg of wet depithed bagasse. From this study, the unbleached pulp produced from fresh bagasse did not have very good strength properties for the production of corrugated medium for cartons and bleached pulp. In particular, the lignin contents as indicated by the Kappa number for the unbleached pulps are high for making bleached pulp. However, in spite of the high lignin content, it is possible to bleach the pulp to acceptable levels of brightness up to 86.6% ISO. The economics were assessed for three tier pricing (namely low, medium and high price). The economic return for a plant that produces 100 air dry t/d of brownstock pulp is satisfactory for both high and medium pricing levels of pricing. The outcomes from the project justify that work should continue through to either pilot plant or upgraded laboratory facility.
Resumo:
This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental work is complemented by modelling work. Both the steady-state and dynamic behaviour of pulp pads are evaluated in the experimental and modelling components of this project. Bagasse, the fibrous residue that remains after sugar is extracted from sugarcane, is normally burnt in Australia to generate steam and electricity for the sugar factory. A study into bagasse pulp was motivated by the possibility of making highly value-added pulp products from bagasse for the financial benefit of sugarcane millers and growers. The bagasse pulp and paper industry is a multibillion dollar industry (1). Bagasse pulp could replace eucalypt pulp which is more widely used in the local production of paper products. An opportunity exists for replacing the large quantity of mainly generic paper products imported to Australia. This includes 949,000 tonnes of generic photocopier papers (2). The use of bagasse pulp for paper manufacture is the main application area of interest for this study. Bagasse contains a large quantity of short parenchyma cells called ‘pith’. Around 30% of the shortest fibres are removed from bagasse prior to pulping. Despite the ‘depithing’ operations in conventional bagasse pulp mills, a large amount of pith remains in the pulp. Amongst Australian paper producers there is a perception that the high quantity of short fibres in bagasse pulp leads to poor filtration behaviour at the wet-end of a paper machine. Bagasse pulp’s poor filtration behaviour reduces paper production rates and consequently revenue when compared to paper production using locally made eucalypt pulp. Pulp filtration can be characterised by two interacting factors; permeability and compressibility. Surprisingly, there has previously been very little rigorous investigation into neither bagasse pulp permeability nor compressibility. Only freeness testing of bagasse pulp has been published in the open literature. As a result, this study has focussed on a detailed investigation of the filtration properties of bagasse pulp pads. As part of this investigation, this study investigated three options for improving the permeability and compressibility properties of Australian bagasse pulp pads. Two options for further pre-treating depithed bagasse prior to pulping were considered. Firstly, bagasse was fractionated based on size. Two bagasse fractions were produced, ‘coarse’ and ‘medium’ bagasse fractions. Secondly, bagasse was collected after being processed on two types of juice extraction technology, i.e. from a sugar mill and from a sugar diffuser. Finally one method of post-treating the bagasse pulp was investigated. The effects of chemical additives, which are known to improve freeness, were also assessed for their effect on pulp pad permeability and compressibility. Pre-treated Australian bagasse pulp samples were compared with several benchmark pulp samples. A sample of commonly used kraft Eucalyptus globulus pulp was obtained. A sample of depithed Argentinean bagasse, which is used for commercial paper production, was also obtained. A sample of Australian bagasse which was depithed as per typical factory operations was also produced for benchmarking purposes. The steady-state pulp pad permeability and compressibility parameters were determined experimentally using two purpose-built experimental rigs. In reality, steady-state conditions do not exist on a paper machine. The permeability changes as the sheet compresses over time. Hence, a dynamic model was developed which uses the experimentally determined steady-state permeability and compressibility parameters as inputs. The filtration model was developed with a view to designing pulp processing equipment that is suitable specifically for bagasse pulp. The predicted results of the dynamic model were compared to experimental data. The effectiveness of a polymeric and microparticle chemical additives for improving the retention of short fibres and increasing the drainage rate of a bagasse pulp slurry was determined in a third purpose-built rig; a modified Dynamic Drainage Jar (DDJ). These chemical additives were then used in the making of a pulp pad, and their effect on the steady-state and dynamic permeability and compressibility of bagasse pulp pads was determined. The most important finding from this investigation was that Australian bagasse pulp was produced with higher permeability than eucalypt pulp, despite a higher overall content of short fibres. It is thought this research outcome could enable Australian paper producers to switch from eucalypt pulp to bagasse pulp without sacrificing paper machine productivity. It is thought that two factors contributed to the high permeability of the bagasse pulp pad. Firstly, thicker cell walls of the bagasse pulp fibres resulted in high fibre stiffness. Secondly, the bagasse pulp had a large proportion of fibres longer than 1.3 mm. These attributes helped to reinforce the pulp pad matrix. The steady-state permeability and compressibility parameters for the eucalypt pulp were consistent with those found by previous workers. It was also found that Australian pulp derived from the ‘coarse’ bagasse fraction had higher steady-state permeability than the ‘medium’ fraction. However, there was no difference between bagasse pulp originating from a diffuser or a mill. The bagasse pre-treatment options investigated in this study were not found to affect the steady-state compressibility parameters of a pulp pad. The dynamic filtration model was found to give predictions that were in good agreement with experimental data for pads made from samples of pretreated bagasse pulp, provided at least some pith was removed prior to pulping. Applying vacuum to a pulp slurry in the modified DDJ dramatically reduced the drainage time. At any level of vacuum, bagasse pulp benefitted from chemical additives as quantified by reduced drainage time and increased retention of short fibres. Using the modified DDJ, it was observed that under specific conditions, a benchmark depithed bagasse pulp drained more rapidly than the ‘coarse’ bagasse pulp. In steady-state permeability and compressibility experiments, the addition of chemical additives improved the pad permeability and compressibility of a benchmark bagasse pulp with a high quantity of short fibres. Importantly, this effect was not observed for the ‘coarse’ bagasse pulp. However, dynamic filtration experiments showed that there was also a small observable improvement in filtration for the ‘medium’ bagasse pulp. The mechanism of bagasse pulp pad consolidation appears to be by fibre realignment. Chemical additives assist to lubricate the consolidation process. This study was complemented by pulp physical and chemical property testing and a microscopy study. In addition to its high pulp pad permeability, ‘coarse’ bagasse pulp often (but not always) had superior physical properties than a benchmark depithed bagasse pulp.
Resumo:
Sugarcane bagasse pulp normally has high dewatering resistance and poor strength properties. In a previous study it was shown that highly depithed bagasse chemical pulp has excellent dewatering properties which may improve the production rate of bagasse based tissue, paper and board. In this study pulp properties of this highly depithed bagasse pulp were tested and compared favourably with regular depithed bagasse pulp. In addition to better dewatering rates, the pulp yield, tear strength and water retention value seemingly improved. Whilst a slight reduction in burst, tensile and short-span compression strengths occurred, they were still comparable to values reported for a regular bagasse pulp.
Resumo:
Sweden’s protest against the Vietnam War was given tangible form in 1969 through the decision to give economic aid to the Government of North Vietnam. The main outcome was an integrated pulp and paper mill in the Vinh Phu Province north-west of Hanoi. Known as Bai Bang after its location, the mill became the most costly, one of the longest lasting and the most controversial project in the history of Swedish development cooperation. In 1996 Bai Bang produced at its full capacity. Today the mill is exclusively managed and staffed by the Vietnamese and there are plans for future expansion. At the same time a substantial amount of money has been spent to reach these achievements. Looking back at the cumbersome history of the project the results are against many’s expectations. To learn more about the conditions for sustainable development Sida commissioned two studies of the Bai Bang project. Together they touch upon several important issues in development cooperation over a period of almost 30 years: the change of aid paradigms over time, the role of foreign policy in development cooperation, cultural obstacles, recipient responsibility versus donor led development etc. The two studies were commissioned by Sida’s Department for Evaluation and Internal Audit which is an independent department reporting directly to Sida’s Board of Directors. One study assesses the financial and economic viability of the pulp and paper mill and the broader development impact of the project in Vietnam. It has been carried out by the Centre for International Economics, an Australian private economic research agency. The other study analyses the decision-making processes that created and shaped the project over a period of two decades, and reflects on lessons from the project for development cooperation in general. This study has been carried out by the Chr. Michelsen Institute, a Norweigan independent research institution.
Resumo:
Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.