161 resultados para 07 Agricultural and Veterinary Sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gold standard method for detecting chlamydial infection in domestic and wild animals is PCR, but the technique is not suited to testing animals in the field when a rapid diagnosis is frequently required. The objective of this study was to compare the results of a commercially available enzyme immunoassay test for Chlamydia against a quantitative Chlamydia pecorum-specific PCR performed on swabs collected from the conjunctival sac, nasal cavity and urogenital sinuses of naturally infected koalas (Phascolarctos cinereus). The level of agreement for positive results between the two assays was low (43.2%). The immunoassay detection cut-off was determined as approximately 400 C. pecorum copies, indicating that the test was sufficiently sensitive to be used for the rapid diagnosis of active chlamydial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance (IR). Laminitis, failure of the weight-bearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs) responsible for glucose uptake, are central to the dysregulation of glucose metabolism and may play a role in laminitis pathophysiology. OBJECTIVES We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during hyperinsulinaemia. STUDY DESIGN Randomised, controlled study. METHODS Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged-euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged-glucose infusion (p-GI) and results were compared to electrolyte-treated controls. GLUT protein expression was examined with immunoblotting. RESULTS Lamellar tissue contained more GLUT1 protein than skeletal muscle (p = 0.002) and less GLUT4 than the heart (p = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the p-EHC), GLUT1 protein expression was decreased in skeletal muscle (p = 0.029) but unchanged in the lamellae, while novel GLUTs (8; 12) were increased in the lamellae (p = 0.03), but not skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the p-GI) did not cause differential GLUT protein expression in the lamellae vs. control horses. CONCLUSIONS The results suggest that lamellar tissue functions independently of insulin and that IR may not be an essential component of laminitis aetiology. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues during metabolic dysfunction in horses. The different expression profiles of novel GLUTs during acute and subclinical laminitis may be important to disease pathophysiology and require further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3 concentrations in biochar-amended soils. A decrease in NH4+ and NO3 following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic carbon (C) sequestration rates based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to simulate the economic potential for C sequestration in response to conservation tillage in the six agro-ecological zones within the Southern Region of the Australian grains industry. The net C sequestration rate over 20 years for the Southern Region (which includes discounting for associated greenhouse gases) is estimated to be 3.6 or 6.3 Mg C/ha after converting to either minimum or no-tillage practices, respectively, with no-till practices estimated to return 75% more carbon on average than minimum tillage. The highest net gains in C per ha are realised when converting from conventional to no-tillage practices in the high-activity clay soils of the High Rainfall and Wimmera agro-ecological zones. On the basis of total area available for change, the Slopes agro-ecological zone offers the highest net returns, potentially sequestering an additional 7.1 Mt C under no-tillage scenario over 20 years. The economic analysis was summarised as C supply curves for each of the 6 zones expressing the total additional C accumulated over 20 years for a price per t C sequestered ranging from zero to AU$200. For a price of $50/Mg C, a total of 427 000 Mg C would be sequestered over 20 years across the Southern Region, <5% of the simulated C sequestration potential of 9.1 Mt for the region. The Wimmera and Mid-North offer the largest gains in C under minimum tillage over 20 years of all zones for all C prices. For the no-tillage scenario, for a price of $50/Mg C, 1.74 Mt C would be sequestered over 20 years across the Southern Region, <10% of the simulated C sequestration potential of 18.6 Mt for the region over 20 years. The Slopes agro-ecological zone offers the best return in C over 20 years under no-tillage for all C prices. The Mallee offers the least return for both minimum and no-tillage scenarios. At a price of $200/Mg C, the transition from conventional tillage to minimum or no-tillage practices will only realise 19% and 33%, respectively, of the total biogeochemical sequestration potential of crop and pasture systems of the Southern Region over a 20-year period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.