5 resultados para Optimization problems

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse’s assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.