3 resultados para Écoulement incompressible
em Nottingham eTheses
Resumo:
We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous P^3_{k}-P_{k-1} elements whereas the magnetic part of the equations is approximated by discontinuous P^3_{k}-P_{k+1} elements. We carry out a complete a-priori error analysis and prove that the energy norm error is convergent of order O(h^k) in the mesh size h. We also show that the method is able to correctly capture and resolve the strongest magnetic singularities in non-convex polyhedral domains. These results are verified in a series of numerical experiments.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z_2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.