6 resultados para underground coalmines
em Universidade do Minho
Resumo:
This paper aims to describe the Sequential Excavation Method, used for excava-tion in underground works, as well as the related risks and preventive measures. This method has characteristics that differentiate it from other tunnelling techniques: it uses a larger number of workers and equipment; it has a high concurrency of tasks with various workers and equip-ment quite exposed to hazards; and it uses many potentially aggressive chemicals. Firstly, it is given a broad overview of this issue. Afterwards, it will be presented the results of a survey to a sample of experienced technicians, aimed at gauging the relevance of a set of guidelines relat-ing to the design and work phases, applicable to the domestic market and prepared following technical visits to works abroad.
Resumo:
Positioning technologies are becoming ubiquitous and are being used more and more frequently for supporting a large variety of applica- tions. For outdoor applications, global navigation satellite systems (GNSSs), such as the global positioning system (GPS), are the most common and popular choice because of their wide coverage. GPS is also augmented with network-based systems that exploit existing wireless and mobile networks for providing positioning functions where GPS is not available or to save energy in battery-powered devices. Indoors, GNSSs are not a viable solution, but many applications require very accurate, fast, and exible positioning, tracking, and navigation functions. These and other requirements have stim- ulated research activities, in both industry and academia, where a variety of fundamental principles, techniques, and sensors are being integrated to provide positioning functions to many applications. The large majority of positioning technologies is for indoor environments, and most of the existing commercial products have been developed for use in of ce buildings, airports, shopping malls, factory plants, and similar spaces. There are, however, other spaces where positioning, tracking, and navigation systems play a central role in safety and in rescue operations, as well as in supporting speci c activities or for scienti c research activities in other elds. Among those spaces are underground tunnels, mines, and even underwater wells and caves. This chapter describes the research efforts over the past few years that have been put into the development of positioning systems for underground tun- nels, with particular emphasis in the case of the Large Hadron Collider (LHC) at CERN (the European Organization for Nuclear Research), where localiza- tion aims at enabling more automatic and unmanned radiation surveys. Examples of positioning and localization systems that have been devel- oped in the past few years for underground facilities are presented in the fol- lowing section, together with a brief characterization of those spaces’ special conditions and the requirements of some of the most common applications. Section 5.2 provides a short overview of some of the most representative research efforts that are currently being carried out by many research teams around the world. In addition, some of the fundamental principles and tech- niques are identi ed, such as the use of leaky coaxial cables, as used at the LHC. In Section 5.3, we introduce the speci c environment of the LHC and de ne the positioning requirements for the envisaged application. This is followed by a detailed description of our approach and the results that have been achieved so far. Some last comments and remarks are presented in a nal section.
Resumo:
Despite improvements over the years, accidents continue to be a scourge in the construction sector, leading to an increase in the number of journal articles addressing the issue, in an attempt to help construction industry to increase safety performance [1]. This paper aims to, helping construction industry and particulary tunneling community, describe the Portuguese approach to most typical health and safety problems in underground excavations performed with the Sequential Excavation Method (SEM). The article will address various topics, from safety management and organizational practices, to collective and personal protection equipment, to emergency planning. nt problems in safety and health matters are similar to several other countries, the paper will expose a compilation of Portuguese best practices used to solve that problems. This enunciation of best practices describes experience from most important and recognized Project Owners and Contractors in Portugal. In a second phase it will be analysed Portuguese weaknesses, identifying preventive measures, and their comparative importance, that should be adopted in Portugal in order to reduce accidents and health diseases.
Resumo:
Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil