31 resultados para steel industry
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.
Resumo:
A new technique was developed for producing thin panels of a cement based material reinforced with relatively high content of steel fibres originated from the industry of tyre recycling. Flexural tests with notched and un-notched specimens were carried out to characterize the mechanical properties of this Fibre Reinforced Cement Composite (FRCC) and the results are presented and discussed. The values of the fracture mode I parameters of the developed FRCC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To appraise the potentialities of these FRCC panels for the increase of the shear capacity of reinforced (RC) beams, numerical research was performed on the use of developed FRCC panel for shear reinforcement by applying the panels in the lateral faces of RC beams deficiently reinforced in shear.
Resumo:
In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.
Resumo:
In the present work are described and discussed the results of an extensive experimental program that aims to study the long-term behaviour of cracked steel fibre reinforced self-compacting concrete, SFRSCC, applied in laminar structures. In a first stage, the influence of the initial crack opening level (wcr = 0.3 and 0.5 mm), applied stress level, fibre orientation/dispersion and distance from the casting point, on the flexural creep behaviour of SFRSCC was investigated. Moreover, in order to evaluate the effects of the creep phenomenon on the residual flexural strength, a series of monotonic tests were also executed. It was found that wcr = 0.5 mm series showed a higher creep coefficient comparing to the series with a lower initial crack opening. Furthermore, the creep performance of the SFRSCC was influenced by the orientation of the extracted prismatic specimens regarding the direction of the concrete flow within the cast panel.
Resumo:
The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
During recent decades it has been possible to identify several problems in construction industry project management, related with to systematic failures in terms of fulfilling its schedule, cost and quality targets, which highlight a need for an evaluation of the factors that may cause these failures. Therefore, it is important to understand how project managers plan the projects, so that the performance and the results can be improved. However, it is important to understand if other areas beyond cost and time management that are mentioned on several studies as the most critical areas, receive the necessary attention from construction project managers. Despite the cost and time are the most sensitive areas/fields, there are several other factors that may lead to project failure. This study aims at understand the reasons that may cause the deviation in terms of cost, time and quality, from the project management point of view, looking at the knowledge areas mentioned by PMI (Project Management Institute).
Resumo:
Nowadays, organizations are increasingly looking to invest in business intelligence solutions, mainly private companies in order to get advantage over its competitors, however they do not know what is necessary. Business intelligence allows an analysis of consolidated information in order to obtain more specific outlets and certain indications in order to support the decision making process. You can take the right decision based on the data collected from different information systems present in the organization and outside of them. The textile sector is a sector where concept of Business Intelligence it is not many explored yet. Actually there are few textile companies that have a BI platform. Thus, the article objective is present an architecture and show all the steps by which companies need to spend to implement a successful free homemade Business Intelligence system. As result the proposed approach it was validated using real data aiming assess the steps defined.
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
This paper presents part of a study aimed at finding a suitable, yet cost-effective, surface finish for a steel structure subject to the car washing environment and corrosive chemicals. The initial, life cycle and average equivalent annual (AEAC) costs for surface finishing methods were calculated for a steel structure using the LCCC algorithm developed by American Galvanizers Association (AGA). The cost study consisted of 45 common surface finish systems including: hot-dip galvanization (HDG), metallization, acrylic, alkyd and epoxy as well as duplex coatings such as epoxy zinc and inorganic zinc (IOZ). The results show that initial, life cycle and AEAC costs for hot dip galvanization are the lowest among all the other methods, followed by coal tar epoxy painting. The annual average cost of HDG for this structure was estimated about €0.22/m2, while the other cost-effective alternatives were: IOZ, polyurea, epoxy waterborne and IOZ/epoxy duplex coating.
Resumo:
During the recent years followed by the Global Financial Crisis (GFC), most of business and industries around the globe have been hardly hit to the limit that it still struggling to survive, suffering from the crisis financial consequences. For instance, in the construction industry; many construction projects have been suspended or totally cancelled. Nevertheless, among this dilemma, a call has been raised to use the sustainable practices to mitigate the effects of the GFC on construction industry. For the first look, it seems that there is contradiction since the sustainable solutions are often associated with an increase in the initial cost, undoubtedly, the sustainable practices have many advantages in both economic and environment aspects, however, the question which needs to be addressed here is, to what extent using such sustainable practices can mitigate the negative effects of the economic downturn on construction industry. Therefore, it is a challenging argument for using such sustainable construction from its economic perspective, however, this paper is aiming to present the economical benefits of sustainable practices in construction industry, and trying to clear the doubt of the high initial costs of the sustainable construction through studying the life cycle benefit of green building.