13 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento
em Universidade do Minho
Resumo:
Dissertao de mestrado integrado em Engenharia e Gesto de Sistemas de Informao
Resumo:
Dissertao de mestrado integrado em Engenharia Eletrnica Industrial e Computadores
Resumo:
O desenvolvimento profissional dos professores de matemtica, por meio de programas nacionais e formaes contnuas, deve proporcionar experincias que envolvam investigao, pensamento, planeamento, prtica e reflexo. No caso da tecnologia, no nos devemos focar nas ferramentas em si, mas no modo como so usadas pelos docentes em contexto de sala de aula. Existem taxonomias de atividades de aprendizagem baseadas no contedo assentes na ideia do professor como construtor do currculo, que, para integrar com sucesso a tecnologia educativa nas aulas, desenvolve o conhecimento pedaggico e tecnolgico do contedo (TPACK), e apresenta-se a de matemtica. Desse modo, reflete-se, por meio de vrios estudos nacionais e internacionais, que as tecnologias devero ser usadas pelos professores de acordo com objetivos, contedos e pedagogias especficas para terem um efeito positivo na aprendizagem dos alunos sobre as atividades baseadas no contedo que melhor se enquadram com essas tecnologias.
Resumo:
Dissertao de mestrado em Educao Especial (rea de especializao em Dificuldades de Aprendizagem Especficas)
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
O objetivo deste trabalho apresentar os resultados da anlise das concepes de dois protagonistas de uma reforma curricular que est sendo implementada numa escola de engenharia. A principal caracterstica do novo currculo o uso de projetos e oficinas como atividades complementares a serem realizadas pelos estudantes. As atividades complementares acontecero em paralelo ao trabalho realizado nas disciplinas sem que haja uma relao de interdisciplinaridade. O novo currculo est sendo implantado desde fevereiro de 2015. Segundo Pacheco (2005) h dois momentos, dentre outros, no processo de mudana curricular, o currculo ideal, determinado por dimenses epistemolgica, poltica, econmica, ideolgica, tcnica, esttica, e histrica e, que recebe influncia direta daquele que idealiza e cria o novo currculo e, o currculo formal que se traduz na prtica implementada na escola. So essas duas etapas estudadas nesta pesquisa. Para isso sero considerados como fontes de dados dois protagonistas, um mais ligado concepo do currculo e outro da sua implementao, a partir dos quais se busca compreender as motivaes, crenas e percepes que, por sua vez, determinam a reforma curricular. Entrevistas semiestruturadas foram utilizadas como tcnica de pesquisa, com o propsito de se entender a gnese da proposta e as mudanas entre essas duas etapas. Os dados revelam que mudanas aconteceram desde a idealizao at a formalizao do currculo, motivadas por demandas do processo de implementao, revela ainda diferenas na viso de currculo e a motivao para romper com padres na formao de engenheiros no Brasil.
Resumo:
Relatrio de estgio de mestrado em Ensino de Informtica
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
Tese de Doutoramento em Engenharia de Eletrnica e de Computadores
Resumo:
Relatrio de estgio de mestrado em Ensino de Informtica