6 resultados para preconditioning convection-diffusion equation matrix equation
em Universidade do Minho
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
In this work we develop a new mathematical model for the Pennes’ bioheat equation assuming a fractional time derivative of single order. A numerical method for the solu- tion of such equations is proposed, and, the suitability of the new model for modelling real physical problems is studied and discussed
Resumo:
In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.
Resumo:
The influence of the feed composition upon the actual degrees of separation attained at the top and bottom sections of a thermogravitational column is discussed using the classical phenomenological theory of Furry, Jones, and Onsager. It is shown that, except for a feed composition of C 0 = 0.5 (mass fraction), the separation profile is nonsymmetric, i.e., the separations in the top and bottom sections of the column are nonsymmetric with respect to the feed composition, the asymmetry increasing as the feed composition moves away from C 0 = 0.5. An equation for the determination of the optimum feed location as a function of the feed composition is derived.
Resumo:
The equivalent annulus width concept is used to characterize a small commercial thermogravitational hermal diffusion column and its validity checked experimentally by separating batchwise in the column mixtures of n-heptanebenzene with different initial concentrations. The equation of Ruppell and Coull was used to analyse the data in the short separation times range and determine the equivalent annulus width. Good agreement was obtained between the experimental and predicted time-separation curves when using the equivalent annulus width value and on averaged value of the thermal diffusion constant. A new method is presented for the simultaneous determination of the equivalent annulus width and the thermal diffusion constant of a binary mixture from a single set of experimental data.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.