6 resultados para optical measuring system
em Universidade do Minho
Resumo:
Dissertação de mestrado em Engenharia e Gestão da Qualidade
Resumo:
As increasingly more sophisticated materials and products are being developed and times-to-market need to be minimized, it is important to make available fast response characterization tools using small amounts of sample, capable of conveying data on the relationships between rheological response, process-induced material structure and product characteristics. For this purpose, a single / twin-screw mini-extrusion system of modular construction, with well-controlled outputs in the range 30-300 g/h, was coupled to a in- house developed rheo-optical slit die able to measure shear viscosity and normal-stress differences, as well as performing rheo-optical experiments, namely small angle light scattering (SALS) and polarized optical microscopy (POM). In addition, the mini-extruder is equipped with ports that allow sample collection, and the extrudate can be further processed into products to be tested later. Here, we present the concept and experimental set-up [1, 2]. As a typical application, we report on the characterization of the processing of a polymer blend and of the properties of extruded sheets. The morphological evolution of a PS/PMMA industrial blend along the extruder, the flow-induced structures developed and the corresponding rheological characteristics are presented, together with the mechanical and structural characteristics of produced sheets. The application of this experimental tool to other material systems will also be discussed.
Resumo:
One of the major challenges in the development of an immersive system is handling the delay between the tracking of the user’s head position and the updated projection of a 3D image or auralised sound, also called end-to-end delay. Excessive end-to-end delay can result in the general decrement of the “feeling of presence”, the occurrence of motion sickness and poor performance in perception-action tasks. These latencies must be known in order to provide insights on the technological (hardware/software optimization) or psychophysical (recalibration sessions) strategies to deal with them. Our goal was to develop a new measurement method of end-to-end delay that is both precise and easily replicated. We used a Head and Torso simulator (HATS) as an auditory signal sensor, a fast response photo-sensor to detect a visual stimulus response from a Motion Capture System, and a voltage input trigger as real-time event. The HATS was mounted in a turntable which allowed us to precisely change the 3D sound relative to the head position. When the virtual sound source was at 90º azimuth, the correspondent HRTF would set all the intensity values to zero, at the same time a trigger would register the real-time event of turning the HATS 90º azimuth. Furthermore, with the HATS turned 90º to the left, the motion capture marker visualization would fell exactly in the photo-sensor receptor. This method allowed us to precisely measure the delay from tracking to displaying. Moreover, our results show that the method of tracking, its tracking frequency, and the rendering of the sound reflections are the main predictors of end-to-end delay.
Resumo:
Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.