10 resultados para next generation sequencing
em Universidade do Minho
Resumo:
Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal
Resumo:
Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepreneurship
Resumo:
Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.
Resumo:
A Zero waste management is believed to be one of methods to gain sustainability in urban areas. Take advantages of resources as enough as the needs and process it until the last part to be wasted is a contribution to take care the environment for the next generation. Reduce, reuse, and recycle are three simplesactivities which are until nowadays consideredas the back bone of zero waste. Jonggolgreen city is a new urban area in Indonesia with a 100 ha of surface area zoned as education tourism area. It is an independent area with pure natural resources of water, air, and land to be managed and protected. It is planned as green city through zero waste management since2013. In this preliminary period, a monitoring tool is being prepared by applying a Life Cycle Analysis (LCA) for urban areas [1]. This paper will present an explanatory assessment ofthe zero waste management for Jonggolgreen city. The existing situation will be examined through LCA and afterwards,the new program and the proposed green design to gain the next level of zero waste will be discussed. The purpose is to track the persistence of the commitment and the perception of the necessary innovationsin order to achieve the ideal behavior level of LCA.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
Doctoral Programme in Telecommunication - MAP-tele
Resumo:
[Excerpt] The growing global demand for new energy sources combined with environmental concerns had motivated the search for alternative fuels, produced from renewable raw materials. During the last decade, ethanol was considered the next generation of biofuels. But more recently, n-butanol gained attention due to its superior fuel properties when compared with ethanol. Although n-butanol is naturally produced by solventogenic bacteria through ABE fermentation, the low productivities obtained with this bioprocess discouraged its use. Thus, most of n-butanol produced nowadays is chemical synthesized via petrochemical routes and its price is extremely sensitive to crude oil’s price. One possible approach to overcome this issue is to express non-native pathways in microbial factories. (...)
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática