8 resultados para molded pulp
em Universidade do Minho
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Molecular mass distribution of materials solubilized by xylanase treatment of Douglas-Fir kraft pulp
Resumo:
Irgazyme, a commercial xylanase preparation from Trichoderma longibrachiatum, and xylanase D a purified enzyme from Trichoderma harzianum E58 were tested for their ability to enhance peroxide bleaching of Douglas-fir (Pseudotsuga menziesii) kraft pulp. A treatment with Irgazyme caused a much larger increase in brightness than did xylanase D. A double xylanase treatment with Irgazyme, before and after peroxide bleaching, resulted in the highest final brightness. Alkaline extraction increased the brightness of Douglas-fir brownstock. Treatment with Irgazyme released more lignin and carbohydrates than did xylanase D. The molecular mass of the lignin extracted from Irgazyme-treated brownstock was much larger than that from the control pulp. The lignin-like macromolecules directly solubilized from peroxide bleached pulps were substantially larger than those solubilized from the brownstock, irrespective of whether they were produced during xylanase or control treatments. This indicates that different kinds of materials were solubilized when a xylanase treatment was applied at different points in the bleaching sequence and raises concerns about the role of lignin entrapment in the mechanism by which xylanase enhances peroxide bleaching.
Resumo:
The incorporation of fly ash (FA) in cementitious matrices have been frequently used in order to make the matrix more resistant to the action of chlorides. On the other hand, it is known that Ca (OH)2 existing in the matrix is partially consumed by the pozzolanic reactions, which facilitates the advancement of carbonation. Given that the combined action between carbonation and chloride penetration is a fact little known, we speculate about the behaviour of the matrix in this context. This study investigates the influence of the presence of chlorides on the carbonation in mortars with FA. Samples with 0% and 40% replacement of cement CEM I 42.5 R for FA were molded with water/binder 0.56 and 0.52 respectively. After 90 days of curing the specimens were subjected to cycles of immersion/drying for 56 days. Half of the samples was subjected to the following cycle: two days in a solution containing NaCl (concentration equal to 3.5 %); 12 days in the carbonation chamber (4% of CO2). The other half was: two days in water; 12 days in the carbonation chamber. Then, the development of carbonation was evaluated. The results indicate that the presence of chlorides influences the carbonation. The specimens submitted to the exclusive action of CO2 showed a greater depth of carbonation compared to that presented by the specimens subjected to combined action. This may be related to changes in properties of the matrix which may lead to further refinement of the pores and related to the presence of the salt that can lead to partial filling of the pores and the increase in moisture content.
Resumo:
In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.
Resumo:
Dissertação de mestrado em Direito da União Europeia
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica (área de conhecimento em Engenharia Enzimática e das Fermentações)
Resumo:
The present study was carried out to evaluate the effect of chitosan-based edible coatings with Aloe vera extract on the postharvest blueberry fruit quality during storage at 5 °C. Firstly, A. vera fractions (pulp and liquid) were extracted from leaves and evaluated in terms of antifungal and antioxidant capacities. The choice of the most adequate chitosan and A. vera fraction concentrations to be incorporated in coating formulation was made based on the wettability of the corresponding coating solutions. Coatings with 0.5% (w/v) chitosan + 0.5% (w/v) glycerol + 0.1% (w/v) Tween 80 + 0.5% (v/v) A. vera liquid fraction presented the best characteristics to uniformly coat blueberry surface. Physico-chemical (i.e., titratable acidity, pH, weight loss) and microbiological analyses of coated blueberries (non-inoculated or artificially inoculated with Botrytis cinerea) were performed during 25 d. Microbiological growth and water loss levels were approximately reduced by 50% and 42%, respectively, in coated blueberries after 25 d compared to uncoated blueberries. After 15 d, weight loss values were 6.2% and 3.7% for uncoated and chitosanA. vera coated blueberries, respectively. Uncoated fruits presented mold contamination after 2 d of storage (2.0 ± 0.32 log CFU g1), whilst fruits with chitosan-based coatings with A. vera presented mold contamination only after 9 d of storage (1.3 ± 0.35 log CFU g1). Overall, coatings developed in this study extend blueberries shelf-life for about 5 d, demonstrating for the first time that the combination of chitosan and A. vera liquid fraction as edible coating materials has great potential in expanding the shelf-life of fruits.
Resumo:
Dissertação de mestrado em Direito das Crianças, Família e Sucessões